The weakest of the axiomatic systems to be considered in this text is the system \(K \) (named after Kripke).\(^1\) The “basic” semantical and derivational rules spelled out in the last two modules are equivalent to \(K \), in that parallel consequence results hold in them, as will be noted at the appropriate time. We will treat the semantical and derivational systems first, before turning to \(K \) proper. In subsequent modules, we shall examine systems stronger than \(K \), i.e., systems which incorporate all the elements of \(K \) and support consequence-relations not found in \(K \) and its counterparts.

1 The Semantical System \(KI \)

Recall that the basic semantics for Modal Sentential Logic distinguishes between a frame and an interpretation based on a frame. A frame \(\mathbb{F} \) contains a set \(W \) of possible worlds and a relation \(R \) of accessibility defined on those worlds: \(\mathbb{F} = (W, R) \). An interpretation \(I \) based on a frame adds to it a valuation function \(v \) from sentences of \(MSL \) and worlds to truth-values, so that \(I = (W, R, v) \). The semantical rules for the basic semantics for modal sentential logic define the behavior of the \(v \) function. The only difference between interpretations based on a given frame is the assignments made by \(v \) to the sentence letters at worlds and the resulting truth-values for compound sentences at worlds.

1.1 Specification of \(KI \)

The only restriction on \(W \) in a given frame is that there be at least one world in it. There are no restrictions on the accessibility relation \(R \). The presence of \(R \) in a frame does not guarantee that any world stands in that relation to any world. In some frames, \(R \) is an empty relation. An unrestricted class of frames is a set of

\(^1\)A system is said to be weaker than another when there are consequence relations that hold in the stronger system but not in the weaker system.
frames with no constraints on the accessibility relation. The set of all frames is an unrestricted class of frames. A KI-frame is defined as any member of the set of all frames. (In other words, every frame is a KI-frame.) It follows that the accessibility relation is unrestricted relative to the set of all KI-frames.

A KI-interpretation is an interpretation based on a KI-frame, in which v obeys the basic semantical rules for modal sentential logic. The semantical system KI consists of the definition of a KI-interpretation. This system allows the determination of the truth-value of any sentence α of MSL given a KI interpretation.

Recall that a sentence α is said to be entailed in a frame Fr by a set of sentences $\{\gamma_1, \ldots, \gamma_n\}$, if and only if at every world w on every interpretation I based on Fr, if $v_I(\gamma_1, w) = T$, and ..., and $v_I(\gamma_n, w) = T$, then $v_I(\alpha, w) = T$. Now we can say that $\{\gamma_1, \ldots, \gamma_n\}$ KI-entails α, $\{\gamma_1, \ldots, \gamma_n\} \models_{KI} \alpha$, just in case the entailment holds in every KI-frame, which is to say in every frame. Two sentences α and β are KI-equivalent when each is entailed by the other on all KI-frames. A sentence is K-valid, $\models_{KI} \alpha$, when it valid in any KI-frame, that is, in every frame.

To illustrate the workings of the semantical system KI, we shall prove that

$$\{(P \supset Q), \Box P\} \models_{KI} \Box Q.$$

Let Fr be an arbitrary KI-frame, w be a world in W in Fr, and I be an interpretation based on Fr. Suppose $v_I(\Box (P \supset Q), w) = T$ and $v_I(\Box P, w) = T$, it follows by SR-□C that for all worlds w_i, such that $Rw_i w$, $v_I(P \supset Q, w_i) = T$ and $v_I(P, w_i) = T$. So by SR-\supset, $v_I(Q, w_i) = T$. It follows by SR-\Box that $v_I(\Box Q, w) = T$. Since the choice of w and I were arbitrary, $\{(P \supset Q), \Box P\} \models_{Fr} \Box Q$. And since the choice of Fr was arbitrary, $\{(P \supset Q), \Box P\} \models_{KI} \Box Q$.

1.2 Closure in KI

In the previous example, it was proved that ‘$\Box Q$’ is semantically entailed in KI by the sentences ‘$\Box P$’ and ‘$\Box (P \supset Q)$.’ Notice that it is also the case that ‘Q’ is semantically entailed by ‘P’ and ‘$P \supset Q$’ in the semantical system SI for Sentential Logic: $\{P, P \supset Q\} \models_{SI} Q$. These two results suggest that in the semantical system KI, if $\{P, P \supset Q\} \models_{SI} Q$, then $\{\Box P, \Box (P \supset Q)\} \models_{KI} \Box Q$. The reason is that the semantical rules for the non-modal operators function normally in any accessible world.

A more general result for KI is that KI-entailment is preserved when the sentences (including modal sentences) embodying a KI-entailment are made into necessity-sentences. The ‘\Box’ operator usually described as being is closed under the relation of KI-entailment.

Closure of the ‘\Box’ under KI-Entailment

If $\{\gamma_1, \ldots, \gamma_n\} \models_{KI} \alpha$, then $\{\Box \gamma_1, \ldots, \Box \gamma_n\} \models_{KI} \Box \alpha$
Proof. Suppose \(\{\gamma_1, \ldots, \gamma_n\} \vDash_{KI} \alpha \). Then for any \(KI\)-frame \(\mathbf{Fr} \), any \(I \) based on \(\mathbf{Fr} \), and any \(w \) in \(W \), if \(v_I(\gamma_1, w) = T \) and, \ldots, and \(v_I(\gamma_n, w) = T \), then \(v_I(\alpha, w) = T \). Suppose further that \(v_I(\Box \gamma_1, w) = T \), and, \ldots, and \(v_I(\Box \gamma_n, w) = T \). Then for each \(\gamma_i \), \(v_I(\gamma_i, w) = T \) for each world \(w_i \) accessible to \(w \). From the original supposition, it follows that if \(v_I(\gamma_1, w_i) = T \) and, \ldots, and \(v_I(\gamma_n, w_i) = T \), then \(v_I(\alpha, w_i) = T \). So \(v_I(\alpha, w_i) = T \) for each \(w_i \) accessible to \(w \). Therefore, by \(SR\Box \), \(v_I(\Box \alpha, w) = T \). So, if \(v_I(\Box \gamma_1, w) = T \), \ldots, and \(v_I(\Box \gamma_n, w) = T \), then \(v_I(\Box \alpha, w) = T \). Since the result is obtained with arbitrary \(I \) and \(w \), it follows that \(\{\Box \gamma_1, \ldots, \Box \gamma_n\} \models_{\mathbf{Fr}} \Box \alpha \). And since the \(KI\)-frame \(\mathbf{Fr} \) was arbitrary, we have it that \(\{\Box \gamma_1, \ldots, \Box \gamma_n\} \models_{KI} \Box \alpha \), which was to be demonstrated.

\(KI \)-validity is a special case of \(KI \)-entailment, where \(\{\gamma_1, \ldots, \gamma_n\} \) is the empty set: \(\emptyset \models_{KI} \alpha \). So we can obtain a corollary of Closure in the case of validity. We will call this special case of closure necessitation.

Necessitation of \(KI \)-valid Sentences

If \(\models_{KI} \alpha \), then \(\models_{KI} \Box \alpha \)

Proof. Suppose \(\models_{KI} \alpha \). Then \(v_I(\alpha, w) = T \) for all worlds \(w \) in all \(KI \)-interpretations \(I \) based on any \(KI \)-frame \(\mathbf{Fr} \). Suppose \(Rww_i \). Then \(v_I(\alpha, w_i) = T \). So if \(Rww_i \), then \(v_I(\alpha, w_i) = T \). Then by \(SR\Box \), \(v_I(\Box \alpha, w) = T \). Since this holds for any \(I \) and \(w \), \(\models_{\mathbf{Fr}} \alpha \).

And since it holds for any frame \(\mathbf{Fr} \), \(\models_{KI} \Box \alpha \).

2 **The Derivational System \(KD \)**

The derivational system \(KD \) consists of the \(SD \) rules together with the special rules for modal sentences and the restriction that reiteration not occur across strict scope lines.

2.1 **Specification of \(KD \)**

The special modal rules include Strict Reiteration for ‘\(\Box \)’, ‘\(\sim \phi \)’, ‘\(\phi \)’, and ‘\(\sim \phi \)’. Other modal rules are the Introduction rules for ‘\(\Box \)’, ‘\(\sim \phi \)’, and ‘\(\sim \phi \)’ as well as the rule of \(\phi \) Elimination.\(^2\) A sentence \(\alpha \) is \(KD \)-derivable from a set of sentences \(\{\gamma_1, \ldots, \gamma_n\} \), or more compactly, \(\{\gamma_1, \ldots, \gamma_n\} \vdash_{KD} \alpha \), just in case \(\alpha \) is the last step in a derivation by \(SD \) rules from the members of \(\{\gamma_1, \ldots, \gamma_n\} \) as assumptions and itself lies in the scope of no other assumptions. A sentence \(\alpha \) is a \(KD \)-theorem, \(\vdash_{KD} \alpha \), if and only if it is derivable by these rules from no undischarged assumptions.

\(^2\)Stronger derivational systems are generated by adding to or replacing some of the modal rules for \(KD \).
2.2 Closure in KD

Corresponding to closure under semantic entailment is closure under derivability.

Closure of the ‘□’ under KD-Derivability

\{γ_1, \ldots, γ_n\} ⊢_{KD} α, then \{□γ_1, \ldots, □γ_n\} ⊢_{KD} □α

We can demonstrate closure under KD-derivability by providing a schema representing a style of derivation.

Schema for Closure Derivations

<table>
<thead>
<tr>
<th>□γ_1</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>□γ_n</td>
<td>Assumption</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>γ_1</th>
<th>SR-□</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>γ_n</td>
<td>SR-□</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

| α | Derivable from \{γ_1 \ldots γ_n\} |
| □α | □I |

We first assume each of □γ_1, \ldots, □γ_n. Then we introduce a restricted scope line and strictly reiterate each of the assumptions. Given that α is derivable from \{γ_1, \ldots, γ_n\} with no undischarged assumptions, this derivation can take place entirely within the restricted scope line. And if this is so, then we can end the restricted scope line with the use of □ Introduction. Therefore, the derivation may be ended and □α is derivable from \{□γ_1, \ldots, □γ_n\}, which was to be proved.

Corresponding to “necessitation” in the semantical system is a meta-theorem of the derivational system:

Necessitation of KD-Theorems

If ⊢_{KL} α, then ⊢_{KL} □α

Derivational systems (and axiom systems) which have the property of necessitation are called normal systems.\(^3\)

\(^3\)The original axiom system S3 of C.I. Lewis is not a normal system. Semantics for his systems S1, S2 and S3 are not even indirectly truth-functional. Semantically, frames contain “non-normal” worlds at which some non-atomic sentences are assigned truth-values by the valuation function directly. Specifically, □α is always false and □α always true.
We can easily give a derivation schema showing that the result holds for KI-derivability.

Schema for Necessitation Derivations

<table>
<thead>
<tr>
<th>□</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Derivable from no undischarged assumptions</td>
</tr>
<tr>
<td>□α</td>
<td>□ I</td>
</tr>
</tbody>
</table>

If it is assumed that α is derivable with no undischarged assumptions, then the derivation can take place entirely within a restricted scope line. And if this is so, then we can end the restricted scope line with the use of □ Introduction. This can be done within the leftmost restricted scope line, and so the derivation may be ended and □α is a theorem of KD.

We assert without proof that the derivational rules of KD are sound and complete with respect to the semantical system KI.

Soundness and Completeness (for KD)

$\{\gamma_1, \ldots, \gamma_n\} \vdash_{KD} \alpha$ if and only if $\{\gamma_1, \ldots, \gamma_n\} \models_{KI} \alpha$.

We shall frequently use the derivational system to show semantic entailment and validity. It is easier to use than the semantical system, and derivations can be converted automatically into semantical arguments. To show non-entailment, non-validity and other properties that do not require the kind of general reasoning we have been using to establish entailment and validity, we shall construct specific interpretations or describe specific types of interpretations. These interpretations cannot be converted into derivations, as these properties cannot be established by derivation.

2.3 The Axiom System K

Most expositions of modal logic present modal systems as axiom systems rather than derivability systems.\(^4\) What follows is a very brief introduction to the axiomatic approach, which may be of value to the reader in understanding other work on modal logic.

The goal of the logicians who originally produced axiom systems of modal logic was generate a set of theorems that correspond to true sentences about the

\(^4\)Notable exceptions are Frederick Fitch, *Symbolic Logic*, Kenneth Konyndyk, *Introductory Modal Logic* and Daniel Bonevac, *Deduction.*
modalities in question. The resulting system is then said to be a theory of the modalities on the analogy of a theory of sets or a theory of numbers. The main approach in this text is to focus on inferences made with modal premises and/or modal conclusions. It will be seen shortly that this can be done within the scope of an axiom system, as it is possible to define a derivability relation for K like that for KD.

2.3.1 An Axiom System for K

In an earlier module, an axiom system for non-modal Sentential Logic, system SLA, was presented. There were three axiom schemata and one non-modal rules of inference. The system K is an extension of the system SLA. It preserves the axiom schemata and inference rule of SLA while adding one non-modal axiom schema and one non-modal rules of inference of SLA. The formulation of K given here takes the ‘□’ operator as primitive.

Axiomatization of K

\[K-1 \quad \vdash_K \alpha \supset (\beta \supset \alpha), \]

\[K-2 \quad \vdash_K (\alpha \supset (\beta \supset \gamma)) \supset ((\alpha \supset \beta) \supset (\beta \supset \gamma)), \]

\[K-3 \quad \vdash_K (\sim \beta \supset \sim \alpha) \supset ((\sim \beta \supset \alpha) \supset \beta), \]

\[K \quad \vdash_K □(\alpha \supset \beta) \supset (□\alpha \supset □\beta), \]

Modus Ponens From \(\vdash_{SLA} \alpha \) and \(\vdash_K \alpha \supset \beta \), infer \(\vdash_K \beta \).

Necessitation (Nec) From \(\vdash_K \alpha \), infer \(\vdash_K □\alpha \).

The following are schemata for some significant theorems of K:

\[\vdash_K □(\alpha \land \beta) \equiv (□\alpha \land □\beta), \]

\[\vdash_K (□\alpha \lor □\beta) \supset □(\alpha \lor \beta). \]

It has been proved that K is sound and complete relative to the semantical system KI. We will assume these results here. To bring out the analogy between K and the derivational system SD, we shall give a Fitch-style meta-logical derivation of the validity of K.

Before doing so, we shall first make note of a derived truth-condition for ‘⊃.’ (We assume here the principle of bivalence, i.e., that every sentence α of MSL has either the value T or the value F. This holds directly for sentences letters because of $SR-SL$. The semantical rules further guarantee that any sentence built up from sentence letters via the formation rules also have the value T or F.)

\[SR-⊃D \quad v_I(\alpha \supset \beta, \text{w}) = T \text{ just in case if } v_I(\alpha, \text{w}) = T, \text{ then } v_I(\beta, \text{w}) = T. \]
Skeleton of a semantical proof of half of SR-\supsetD:

1. $v_I(\alpha, w) = T \lor v_I(\alpha, w) = F$
 Bivalence
2. $v_I(\beta, w) = T \lor v_I(\beta, w) = F$
 Bivalence
3. $v_I(\alpha, w) = T \rightarrow v_I(\beta, w) = T$
 Assumption
4. $v_I(\beta, w) = T$
 Assumption
5. $v_I(\alpha \supset \beta, w) = T$
 4 SR-\supset
6. $v_I(\beta, w) = F$
 Assumption
7. $v_I(\alpha, w) = T$
 Assumption
8. $v_I(\beta, w) = T$
 3 7 \rightarrow E
9. $v_I(\alpha \supset \beta, w) = T$
 8 SR-\supset
10. $v_I(\alpha, w_1) = F$
 Assumption
11. $v_I(\alpha \supset \beta, w) = T$
 10 SR-\supset
12. $v_I(\alpha \supset \beta, w) = T$
 1 7-9 10-11 \lor E
13. $v_I(\alpha \supset \beta, w) = T$
 2 4-5 6-12 \lor E
14. $(v_I(\alpha, w) = T \rightarrow v(\beta, w) = T) \rightarrow v(\alpha \supset \beta, w) = T$
 3-13 \rightarrow I

Exercise. Prove the converse, that is, if $v_I(\alpha \supset \beta, w) = T$, then if $v_I(\alpha, w) = T$, then $v_I(\beta, w) = T$.

We now show that K, the non-modal axiom schema for K, has only KI-valid instances.
Skeleton of a semantical proof of: $\vdash_KI □(α \supset β) \supset (□α \supset □β)$

1. $v(□(α \supset β), w) = T$ Assumption
2. $v(□α, w) = T$ Assumption
3. Rww_1 Assumption
4. $v(α \supset β, w_1) = T$ 1 SR-$□C$
5. $v(α, w_1) = T$ 2 SR-$□C$
6. $v(β, w_1) = T$ 3 4 SR-$⊃D$
7. $Rww_1 \rightarrow v(β, w_1) = T$ 3-6 $→ I$
8. $v(□β, w) = T$ 7 SR-$□$
9. $v(□α, w) = T \rightarrow v(□β, w) = T$ 2-8 $→ I$
10. $v(□α \supset □β, w) = T$ 9 SR-$⊃D$
11. $v(□(α \supset β), w) = T \rightarrow v(□(α \supset □β), w) = T$ 1-10 $→ I$
12. $v(□(α \supset β) \supset(□α \supset □β), w) = T$ 11 SR-$⊃D$

2.3.2 K and KD

The axiom system K generates all the same theorems as does the derivational system KD. Here we shall sketch a proof of half of this result, that all theorems of K are derivable in KD. We assume that the non-modal components of K (SLA) and of KD (SD) have this property. It first must be shown that all the modal axioms of K are derivable in KD. We here derive one axiom and take it to be apparent that any other axiom could be derived in exactly the same way.
Derivation of an Instance of the Modal K Axiom

<table>
<thead>
<tr>
<th>Step</th>
<th>Derivation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>□(A ⊃ B)</td>
<td>Assumption</td>
</tr>
<tr>
<td>2</td>
<td>□A</td>
<td>Assumption</td>
</tr>
<tr>
<td>3</td>
<td>□(A ⊃ B)</td>
<td>1 Reiteration</td>
</tr>
<tr>
<td>4</td>
<td>□A</td>
<td>3 SR-□</td>
</tr>
<tr>
<td>5</td>
<td>A ⊃ B</td>
<td>2 SR-□</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>4 5 ⊃ E</td>
</tr>
<tr>
<td>7</td>
<td>□B</td>
<td>2 4-6 □ I</td>
</tr>
<tr>
<td>8</td>
<td>□A ⊃ □B</td>
<td>2-7 ⊃ I</td>
</tr>
<tr>
<td>9</td>
<td>□(A ⊃ B) ⊃ (□A ⊃ □B)</td>
<td>1-8 ⊃ I</td>
</tr>
</tbody>
</table>

We have already shown that use of the rule of inference, Necessitation, can be simulated using derivations. So we can use the derivational system KD to prove all the theorems of K. KD is said to contain K in this sense. To prove the equivalence, relative to the set of theorems, of KD and K, one would have to show that all the theorems of KD are theorems of K. This is not easy to do, and we shall not undertake such a proof here.

One way to achieve the desired result would be to take a detour through the semantics. If it can be shown that all the theorems of KD are valid in the semantical system KI (soundness of KD), and that all KI-valid sentences are theorems of K (completeness of K), it would follow that all theorems of KD are theorems of K.

2.3.3 Derivability in K

Another way to express the relation between K and KD is by defining a derivability relation in K. We want to be able to give meaning to the notation that \(\{\gamma_1, \ldots, \gamma_n\} \vdash_K \alpha \). To do so, we define a derivation in K of \(\alpha \) from \(\{\gamma_1, \ldots, \gamma_n\} \) as a finitely long, non-empty, list of sentences of MSL such that each sentence in the list is either:

1. A member of the set \(\{\gamma_1, \ldots, \gamma_n\} \), or
2. An axiom of K, or
3. An immediate consequence by the rules of inference for K applied to sentences above it in the list as if they were theorems.
Here is an example of a K-derivation that proves that $\{\Box A, \Box(A \supset B)\} \vdash_K \Box B$.

1. $\Box A$
Member of the set $\{\Box A, \Box(A \supset B)\}$

2. $\Box(A \supset B)$
Member of the set $\{\Box A, \Box(A \supset B)\}$

3. $\Box(A \supset B) \supset (\Box A \supset \Box B)$
Axiom of K

4. $\Box A \supset \Box B$
2 3 Modus Ponens

5. $\Box B$
1 4 Modus Ponens

We have already shown that the corresponding consequence-relation holds in SD. The completeness and soundness of K relative to KI yields the result that: $\{\gamma_1, \ldots, \gamma_n\} \vdash_K \alpha$ if and only if $\{\gamma_1, \ldots, \gamma_n\} \models_{KI} \alpha$. A more general result, which will not be proved here, is that $\{\gamma_1, \ldots, \gamma_n\} \vdash_K \alpha$ if and only if $\{\gamma_1, \ldots, \gamma_n\} \vdash_{KD} \alpha$. The consequence-relation of derivability gives perfectly parallel results in the three systems, and in this sense the three can be said to be equivalent.

2.4 Modal Operators in K and its Equivalents

Thus far K as been presented in terms of the ‘\Box’ operator. In what follows, the other modal operators of MSL will be discussed in more detail in the context of K and its equivalents.

2.4.1 Possibility

As has been noted, necessity-sentences and possibility-sentences can be defined in terms of each other. If a necessity-sentence is defined in terms of a possibility-sentence, or vice-versa, then the defined sentence is just a notational variant of the original sentence. In that case, we can say that these sentences are definitionally equivalent.

In the semantics, two sentences are equivalent just in case they have the same truth values at all worlds on all interpretations. In the derivational system, two sentences are equivalent just in case each is derivable from the other as an assumption, with no other undischarged assumptions.

In the semantical and derivational systems as presented in the last module, sentences whose main operator is ‘\Box’ or ‘\Diamond’ are governed by their own set of rules and are not defined in terms of each other. Rather than providing definitions, we prove equivalences in KI and KD which parallel the definitions that might have been given. These and two other equivalences are commonly known as Duality.

Duality

$\Box \alpha$ is semantically and derivationally equivalent to $\neg \Diamond \neg \alpha$

$\Diamond \alpha$ is semantically and derivationally equivalent to $\neg \Box \neg \alpha$
□¬α is semantically and derivationally equivalent to ¬◊α

◊¬α is semantically and derivationally equivalent to ¬□α

For the semantical system, we use the truth-definitions for the ‘□’ and the ‘◊’ to prove the equivalence. For the derivational system, the rules of inference for the two operators are used to complete the proof. We will prove the first of the four semantic equivalences and leave the proof of the other three as an exercise.

On an arbitrary interpretation I and arbitrary world w in I in an arbitrary KI-frame,

\[
v_I(□α, w) = T \text{ iff }
\]

for all w_i such that Rww_i, \(v_I(α, w_i) = T \text{ iff} \)

for all w_i such that Rww_i, \(v_I(¬α, w_i) = F \text{ iff} \)

for all w_i such that Rww_i, it is not the case that \(v_I(¬α, w_i) = T \text{ iff} \)

\[
v_I(◊¬α, w) = F \text{ iff}
v_I(¬◊¬α, w) = T.
\]

Since the choice of interpretations and worlds is arbitrary, □α and ¬◊¬α have the same truth-value on all interpretations, and so they are semantically equivalent in an arbitrary frame. Since the choice of frames is arbitrary, the sentences instantiating the schemata are equivalent in all frames KI-equivalent.

Exercise Show that the other three Duality semantical equivalences hold.

To show that the □α and ¬◊¬α are inter-derivable, we must give two separate derivations. We will use the rule-sets for the ‘□’ and for ‘¬◊,’ since the rules for ‘◊’ appear to be incomplete.

Proof that: \([□α] ⊢_{KD} ◊¬α\)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>□α</td>
</tr>
<tr>
<td>2</td>
<td>□α</td>
</tr>
<tr>
<td>3</td>
<td>□α</td>
</tr>
<tr>
<td>4</td>
<td>□α</td>
</tr>
<tr>
<td>5</td>
<td>□α</td>
</tr>
<tr>
<td>6</td>
<td>□α</td>
</tr>
</tbody>
</table>

11
Proof that: \(\{\sim \Diamond \sim \alpha \vdash_{KD} \Box \alpha \} \)

1. \(\sim \Diamond \sim \alpha \) Assumption
2. \(\Box \sim \alpha \) 1 SR-\(\sim \Diamond \)
3. \(\sim \alpha \) Assumption
4. \(\sim \alpha \) 2 Reiteration
5. \(\alpha \) 3-4 \(\sim \) E
6. \(\Box \alpha \) 1 2-5 \(\Box \) I

We prove half of the second derivational equivalence.

Proof that: \(\{\Diamond \alpha \} \vdash_{KD} \sim \Box \sim \alpha \)

1. \(\Diamond \alpha \) Assumption
2. \(\Box \sim \alpha \) Assumption
3. \(\Diamond \alpha \) 1 R
4. \(\Box \sim \alpha \) 2 SR-\(\Box \)
5. \(\sim \Diamond \alpha \) 2 4 \(\sim \Diamond \) I
6. \(\sim \Box \sim \alpha \) 2-5 \(\sim \) I

Exercise. Prove the other half of the second equivalence as well as the third and fourth equivalences.

The reader might suspect that some question has been begged in using the Impossibility rules to prove Duality, since those rules have their origin in the definitional versions of Duality given in an earlier module. But the definitions have not been presupposed to prove Duality in the derivational system. The Impossibility rules are motivated by Duality definitions but do not depend on the definitions in any formal way.

Given the Impossibility rules, if we define the ‘\(\diamond \)’ in terms of the ‘\(\Box \)’, then the resulting derivations yield the definitional equivalents of the derivations using the ‘\(\Box \)’ rules. What has been shown here is that given both sets of rules, we can demonstrate the equivalences given in the definitions without presupposing the definitions.

In axiomatic \(K \), the following are schemata of theorems which use the ‘\(\diamond \)’ operator defined in terms of the ‘\(\Box \)’ operator.
We will give proofs of one of these theorems and half of another in KD.

To prove: \(\vdash KD \Box (A \supset B) \supset (\Box A \supset \Box B)\)

\[
\begin{array}{c|c|c}
1 & \Box (A \supset B) & \text{Assumption} \\
2 & \Box A & \text{Assumption} \\
3 & \Box (A \supset B) & 1 \text{ R} \\
4 & \Box A & 3 \text{ SR-}\Box \\
5 & A & 2 \text{ SR-}\Box \\
6 & B & 5 \text{ 6 } \supset \text{ E} \\
7 & \Box B & 3 \text{ 4-7 } \Box \text{ E} \\
8 & \Box A \supset \Box B & 2 \text{ 8 } \supset \text{ I} \\
9 & \Box (A \supset B) \supset (\Box A \supset \Box B) & 1 \text{-9 } \supset \text{ I} \\
\end{array}
\]
To prove: $\vdash_{KD} \Box (A \lor B) \supset (\Box A \lor \Diamond B)$

1. $\Box (A \lor B)$ Assumption
2. $\sim (\Box A \lor \Diamond B)$ Assumption
3. $\Box (A \lor B)$ 1 R
4. $\Box A$ Assumption
5. $\Box A \lor \Diamond B$ 4 \lor I
6. $\sim (\Box A \lor \Diamond B)$ 2 Reiteration
7. $\sim \Box A$ 3-6 \sim I
8. $\Diamond B$ Assumption
9. $\Box A \lor \Diamond B$ 8 \lor I
10. $\sim (\Box A \lor \Diamond B)$ 2 Reiteration
11. $\sim \Diamond B$ 8-10 \sim I
12. $\Box (A \lor B)$ 3 SR-\Box
13. $\sim B$ 11 SR-$\sim \Diamond$
14. A Assumption
15. A 14 Reiteration
16. B Assumption
17. $\sim A$ Assumption
18. $\sim B$ 13 Reiteration
19. B 16 Reiteration
20. A 17-19 \sim E
21. A 12 14-15 16-20 \lor E
22. $\Box A$ 12-21 \Box I
23. $\Box A \lor \Diamond B$ 2-22 \sim E
24. $\Box (A \lor B) \supset (\Box A \lor \Diamond B)$ 1-23 \supset I

Exercise. Prove the rest of the results. (Use derived rules of SD if you wish to simplify the derivations.)
2.4.2 Strict Implication

We saw in a previous module that necessity-sentences can be understood semantically as mirroring in the object-language the meta-logical property of validity. The same kind of mirroring relation holds between a “strict implication” $\alpha \not\rightarrow \beta$ and the meta-logical relation of semantic entailment. The original modal axiom systems of C. I. Lewis were aimed at producing theorems that were supposed to capture the nature of “implication.” In a later book, Lewis contrasted the way modal logic treats deduction with the way it is treated in the “truth-value” system SI.

The principles of Strict Implication express the facts about any such deduction in an explicit manner in which they cannot be expressed within the truth-value system itself, for the reason that, in Strict Implication, what is tautological is distinguished from what is merely true, whereas this difference does not ordinarily appear in the symbols of the truth-value system. (Symbolic Logic (1932), 247)

The “tautological” is expressed by the necessity-sentence in modal logic but cannot be expressed in non-modal Sentential Logic. It can only be expressed in the meta-language of SL.

Lewis wanted to treat formally the relation of semantic entailment. This much is clear from his early discussion of the meaning of strict implication.

The strict implication, $p \not\rightarrow q$, means, “It is impossible that p be true and q be false,” or “p is inconsistent with the denial of q.” Any set of mutually consistent propositions may be said to define a “possible situation” or “case” or “state of affairs”. And a proposition may be “true” of more than one such possible situation—may belong to more than one such set. In these terms, we can translate $p \not\rightarrow q$ by “Any situation in which p should be true and q false is impossible”.

From the standpoint of our formal semantics, we are interested in the case of semantic entailment where the entailing set of sentences contains only one member:

$\{\gamma\} \models_{KI} \alpha$.

For example, we know that

$\{P \land Q\} \models_{KI} P$.

This entailment holds because at any world w on any interpretation I, if ‘$P \land Q$’ is true at w then ‘Q’ is true there as well.

We can say generally that if $\{\alpha\} \models_{KI} \beta$, then $\models_{KI} \alpha \not\rightarrow \beta$.

15
Proof. If \(\{\alpha\} \vdash_{KI} \beta \), then for all worlds \(w \) in all interpretations \(I \) based on any \(KI \)-frame, if \(v_I(\alpha, w) = T \), then \(v_I(\beta, w) = T \). Therefore, if a world \(w_i \) is accessible to a given world \(w \), if \(v_I(\alpha, w_i) = T \), then \(v_I(\beta, w_i) = T \). So for all worlds \(w \) and all interpretations \(I \) in all \(KI \)-frames, \(v_I(\alpha \rightarrow \beta, w) = T \), which is to say that \(\vdash_{KI} \alpha \rightarrow \beta \).

Inspection of the derivational rule \(SR-\rightarrow \) shows that if \(\{\alpha\} \vdash_{KI} \beta \), then \(\vdash_{KI} \alpha \rightarrow \beta \). One need only make a strict assumption of \(\alpha \), derive \(\beta \) there and use \(SR-\rightarrow \) to discharge the assumption and write \(\alpha \rightarrow \beta \).

These results establishes that strict implication mirrors in the object-language the meta-logical relation of semantical entailment. It is important to note that what counts as a semantical entailment is different relative to different semantical systems. Exactly which set of valid strict implications is produced by a semantical system is vital to its adequacy as a logic of “implies.”

Strict implication can be understood as a necessitated material conditional. \(\alpha \rightarrow \beta \) is semantically equivalent to \(\Box(\alpha \rightarrow \beta) \). \(SR-\rightarrow \) states that if either \(v_I(\alpha, w_i) = F \) or \(v_I(\beta, w_i) = T \) at all worlds \(w_i \) in \(I \) such that \(Rww_i \), then \(v_I(\alpha \rightarrow \beta, w) = T \); \(v_I(\alpha \rightarrow \beta, w) = F \) otherwise. By \(SR-\neg \), if either \(v_I(\alpha, w) = F \) or \(v_I(\beta, w) = T \), then \(v_I(\alpha \rightarrow \beta, w) = T \); \(v_I(\alpha \rightarrow \beta, w) = F \) otherwise. Finally, \(SR-\Box \) states that if \(v_I(\alpha, w_i) = T \) at all worlds \(w_i \) in \(I \) such that \(Rww_i \), then \(v_I(\Box \alpha, w) = T \); \(v_I(\Box \alpha, w) = F \) otherwise. The condition which must be satisfied at \(w_i \) for the truth of both \(\alpha \rightarrow \beta \) and \(\Box \alpha \) is exactly the same.

The same result holds in the derivational system. If \(\alpha \supset \beta \) is derivable from no assumptions in a restricted scope line, we can end the scope line and affix a ‘\(\Box \)’ to the front of it. And this can be done just in case we can derive \(\beta \) from the Modal Assumption \(\alpha \) and no other assumptions, which entitles us to end the restricted scope line and write \(\alpha \rightarrow \beta \).

Using this result, we can show that ‘\(\Box \)’ and ‘\(\diamond \)’ are closed under strict implication. Closure under strict implication in the derivation system means that \(\{\Box \alpha, \alpha \rightarrow \beta\} \vdash_{KD} \Box \beta \). (And the corresponding result holds for the semantical system.)
To prove: $[\square \alpha, \alpha \supset \beta] \vdash_{KD} \square \beta$

<table>
<thead>
<tr>
<th>Step</th>
<th>Formula</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\square \alpha$</td>
<td>Assumption</td>
</tr>
<tr>
<td>2</td>
<td>$\alpha \supset \beta$</td>
<td>Assumption</td>
</tr>
<tr>
<td>3</td>
<td>$\square \alpha$</td>
<td>1 SR-\square</td>
</tr>
<tr>
<td>4</td>
<td>$\alpha \supset \beta$</td>
<td>3 SR-\supset E</td>
</tr>
<tr>
<td>5</td>
<td>β</td>
<td>4 3 SR-\supset E</td>
</tr>
<tr>
<td>6</td>
<td>$\square \beta$</td>
<td>3-5 \square 1</td>
</tr>
</tbody>
</table>

Exercise. Give a derivation-schema that shows closure of a single possibility-sentence over strict implication.

The closure results show once again how strict implication precisely mirrors the consequence relation in KI and KD. In KD, for example, we have by the closure property that if $[\alpha] \vdash_{KD} \beta$, then $[\square \alpha] \vdash_{KD} \square \beta$. The antecedent of this conditional is represented by the strict implication sentence-schema in $[\square \alpha, \alpha \supset \beta] \vdash_{KD} \square \beta$.

2.4.3 Other Modal Operators

Strict implication can be understood as the result of prefixing a modal operator to (or “modalizing”) Sentential Logic sentences of the form $\alpha \supset \beta$ to get $\square (\alpha \supset \beta)$. Other SL sentence-forms are subject to the same procedure. A modalized SL form can serve as the basis for defining other modal operators that have appeared in the literature of modal logic. Here is a list of all the possibilities.

- $\square \neg \alpha \quad \Diamond \neg \alpha$
- $\square (\alpha \land \beta) \quad \Diamond (\alpha \land \beta)$
- $\square (\alpha \lor \beta) \quad \Diamond (\alpha \lor \beta)$
- $\square (\alpha \supset \beta) \quad \Diamond (\alpha \supset \beta)$
- $\square (\alpha \equiv \beta) \quad \Diamond (\alpha \equiv \beta)$

Three of these are of historical interest and will be examined here: $\square (\alpha \equiv \beta)$ (which is equivalent to $\alpha \iff \beta$), $\square (\alpha \lor \beta)$, and $\Diamond (\alpha \land \beta)$ (which is equivalent to $\alpha \circ \beta$).

Lewis explained strict equivalence $\alpha \iff \beta$ as a relation that “denotes an equivalence of logical import or meaning, while $p\equiv q$ denotes simply an equivalence of truth-value” (Survey of Symbolic Logic, p. 294). He could have added that a strict equivalence between α and β can be understood as the result of prefixing a necessity operator to a biconditional: $\square (\alpha \equiv \beta)$. In our semantics, a sentence of this form

5Prefixing a ‘\square’ to a negated sentence yields impossibility, which has already been treated above.
is true at a world just in case the embedded biconditional is true at all accessible worlds. That is, at each accessible world, either \(\alpha \) and \(\beta \) are both true there or they are both false there. As can be seen, this is exactly what makes a strict equivalence true.

Exercise. Give a derivation to prove the following: \(\{ (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha) \} \vdash_{KD} \Box (\alpha \equiv \beta) \).

The same result can be obtained by appeal to closure. The conjunction \((\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha) \) is equivalent to \(\Box (\alpha \supset \beta) \land \Box (\beta \supset \alpha) \). We know from Sentential Logic that \(\alpha \supset \beta \) and \(\beta \supset \alpha \) are both consequences of \((\alpha \equiv \beta) \). By closure, \(\Box (\alpha \supset \beta) \land \Box (\beta \supset \alpha) \) is a consequence of these two sentence forms. So \(\Box (\alpha \supset \beta) \land \Box (\beta \supset \alpha) \) is a consequence of \(\Box (\alpha \equiv \beta) \).

Conversely, by closure, \(\Box (\alpha \equiv \beta) \) is a consequence of \(\Box (\alpha \supset \beta) \) and \(\Box (\beta \supset \alpha) \). And these two sentences are consequences of \(\Box (\alpha \supset \beta) \land \Box (\beta \supset \alpha) \). Therefore, \(\Box (\alpha \equiv \beta) \) is a consequence of \(\Box (\alpha \supset \beta) \land \Box (\beta \supset \alpha) \). It follows that \(\Box (\alpha \supset \beta) \land \Box (\beta \supset \alpha) \) and \(\Box (\alpha \equiv \beta) \) are consequences of each other. That is, they are equivalent forms.

Note also that single possibility- and necessity-sentences are closed under strict equivalence. In the semantical system, this means that \(\{ \Box \alpha, \alpha \equiv \beta \} \vdash_{KD} \Box \beta \) and \(\{ \Diamond \alpha, \alpha \equiv \beta \} \vdash_{KD} \Diamond \beta \). This follows from the fact that strict equivalence-sentences are conjunctions of strict implication sentences, for which closure holds.

Another modal operator that can be formed by modalizing an SL sentence-form is *intensional disjunction*: \(\Box (\alpha \lor \beta) \). Lewis started his investigations into modal logic with a discussion of this operator (though without symbolizing it). In *A Survey of Symbolic Logic*, he used a ‘\(\lor \)’ for intensional disjunction and a ‘\(+ \)’ for truth-functional disjunction. Here is how he described the difference.

Both \(p \lor q \) and \(p+q \) would be read as “Either \(p \) or \(q \)”. But \(p \lor q \) denotes a necessary connection; \(p+q \) a merely factual one. Let \(p \) represent “Today is Monday”, and \(q \), “\(2 + 2 = 4 \)”. Then \(p+q \) is true but \(p \lor q \) is false. In point of fact, at least one of the two propositions, “Today is Monday”, and “\(2 + 2 = 4 \)”, is true; but there is no necessary connection between them. “Either . . . or . . . ” is ambiguous in this respect. Ask the members of any company whether the proposition “Either today is Monday or \(2 + 2 = 4 \)” is true, and they will disagree. Some will combine “Either . . . or . . . ” to the \(p \lor q \) meaning, others will make it include the \(p+q \) meaning; few, or none, will make the necessary distinction. (*A Survey of Symbolic Logic*, p. 294)
An example of the kind of sentence Lewis had in mind as a necessary disjunction is (in the notation of this text) $\alpha \lor \sim \alpha$. Sentences with this form are valid in KI, and by necessitation, $\Box(\alpha \lor \sim \alpha)$ is valid in KI as well.

Lewis showed a number of properties of consistency (in his system $S3$), including these: “If p and q are consistent, then q and p are consistent”, “If p and q are consistent, then it is possible that p be true”, “If it is possible that p be true, then p is consistent with itself” (A Survey of Symbolic Logic, p. 300). Viewed as consequence-relations or strict implications, these hold in KI and KD as well.

Exercise. Symbolize these conditionals as strict implications. Show that they hold in KI.

Of some interest is an entailment of $S3$ (and KD) discussed by Lewis:

$$\vdash_{KI} (\alpha \circ (\beta \land \gamma))$$

We can see that this holds because it is equivalent to

$$\Diamond(\alpha \land (\beta \land \gamma)) \vdash_{KI} \Diamond(\beta \land (\alpha \land \gamma)).$$

The non-modal conjunctions inside the possibility-operators are clearly equivalent, as can be seen from the Sentential Logic derivational rule of Association. But the consistency relation itself is not associative in K.

$$\{\alpha \circ (\beta \land \gamma)\} \not\vdash_{KI} \beta \circ (\alpha \land \gamma).$$

This was recognized by Lewis, who remarked that because of the failure, the treatment of consistency “seems incomplete” (Survey, p. 300). The reason for the failure can be seen quite readily when an equivalent form is displayed.

$$\{\Diamond(\alpha \land (\beta \land \gamma))\} \not\vdash_{KI} \Diamond(\Diamond(\beta \land \alpha) \land \gamma).$$

Suppose that we have an interpretation I with worlds $w, w_1,$ and $w_2,$ and that Rw_1 and Rw_1w_2. But suppose further that it is not the case that Rw_2 or that any other accessibility relation holds. Let α be true and γ false at w_1. At w_2, let β and γ both be true. In that case, $\beta \land \gamma$ is true at w_2, and so $\Diamond(\beta \land \gamma)$ is true at w_1, in which case, so is $\alpha \land \Diamond(\beta \land \gamma)$. Then $\Diamond(\alpha \land (\beta \land \gamma))$ is true at w. Now let γ be false at w_1, in which case $\Diamond(\beta \land \alpha) \land \gamma$ is false at w_1. Since w_1 is the only world accessible to w, $\Diamond(\Diamond(\beta \land \alpha) \land \gamma)$ is false there as well, which was to be demonstrated. Unlike the other results, this failure is not overcome in the stronger systems we will be considering. No restrictions on accessibility will block the kind of counter-example just given. Non-associativity seems to be a fundamental fact about consistency.

7A slash through a turnstile or double-turnstile indicates that the property or relation indicated by the symbol does not hold.
3 Non-Consequences in K and its Equivalents

The semantical system KI and its derivational twin KD are very weak. A number of consequence relations which one might expect to hold, given an intended informal interpretation of the logic, do not. These failures mean that the system is inadequate for those intended uses of modal logic. Before turning to these applications, we will look at some failures of consequence that would seem to present a problem for most applications. We will express these failures primarily in terms of the semantical system KI.

Because a KI-frame may have any relation of accessibility holding of its worlds, some KI-frames will contain “dead ends,” worlds to which no world is accessible. On any interpretation based on such a frame Fr, a sentence of the form $\Box \alpha$ will be false at such a dead-end. Therefore,

For all α and some frame Fr, $\not\models_{Fr} \Box \alpha$.

And since such a frame Fr is a member of the class of all KI-frames, we may assert:

For all α, $\not\models_{KI} \Box \alpha$.

Because of soundness, the corresponding failure occurs in the derivational system. An examination of the rules shows that there is no rule for the introduction of a possibility operator. Adding such a rule will allow theorems of the form $\Diamond \alpha$. The failure is overcome in system D, to be discussed in a later module. A related failure is that a necessity-sentence $\Box \alpha$ does not have as a consequence the possibility-sentence $\Diamond \alpha$. This failure was shown in the previous module.

Another significant non-consequence is this:

$\Box \alpha \not\models_{KI} \alpha$.

A necessity-sentence does not have its embedded sentence as a consequence. The reason here is that in some frames, there are worlds that are not accessible to themselves. This allows an interpretation I on whose valuation function the embedded sentence α fails to hold at the world where it is evaluated but does hold at all accessible worlds. The accessibility relation need not be reflexive on a KI-frame. Thus we can construct a frame with a world w such that it is not the case that Rww and on which $v_I(\alpha, w)=F$, while for all accessible w_i, $v_I(\alpha, w_i)=T$. On that interpretation, $v_I(\Box \alpha, w)=T$, which blocks the semantical entailment. We shall see that system T will allow this consequence. The derivational system for T will include a rule of \Box Elimination which will directly yield the consequence in question.

Detachment for strict implication also fails in KI.

$\{\alpha, \alpha \rightarrow \beta\} \not\models_{KI} \beta$.
This is most readily seen in the derivational system. If a sentence α occurs on a line of a derivation, and $\alpha \rightarrow \beta$ occurs on another line, one may not infer β. One would have to initiate a strict scope line and use SR to get $\alpha \supset \beta$ there, but α may not have a form which would allow the use of Strict Reiteration across that line. From a semantical standpoint, the reason is that there may be an assignment of T to α and F to β at a world w, despite the fact that $\alpha \rightarrow \beta$ is assigned T there. This can occur if w is not accessible to itself. While at all accessible worlds where α is true, β must be assigned T, w is not one of those worlds, and so it is permissible that β be assigned F there. System T will yield detachment for strict implication.

It might be thought that what is necessary is necessarily necessary, but

$$\{\Box \alpha\} \not\vDash_{KI} \Box \Box \alpha.$$

This failure is due to the fact that the accessibility relation on a KI-frame does not have to be transitive. Based on frames where Rww_1 and $Rw_i w_j$, but not Rww_j, interpretations I can be given on which $v_1(\Box \alpha, w)=T$ and $v_1(\Box \Box \alpha, w)=F$. Consider a frame on which Rww_i and $Rw_i w_j$, but nothing else, and an interpretation I based that frame. Let $v_1(\alpha, w_i)=T$ and $v_1(\alpha, w_j)=F$. Since w_j is the only world accessible to w, $v_1(\Box \alpha, w)=T$. But $v_1(\Box \Box \alpha, w)=F$, since $v_1(\alpha, w_i)=F$ at the only accessible world. So $v_1(\Box \Box \alpha, w)=F$, which was to be proved. In the next chapter, we shall see how system $S4$ allows this consequence. The derivational system for $S4$ will include a more liberal rule of Strict Reiteration.

An even stronger thesis is that what is possible is necessarily possible:

$$\{\Diamond \alpha\} \not\vDash_{KI} \Box \Diamond \alpha.$$

Here the result follows from the fact that a KI-frame need not be euclidean. A relation is euclidean when, if Rww_i and $Rw_i w_j$, then $Rw_j w_i$. So consider a frame in which Rww_i and Rww_j, and nothing else. Let $v_1(\alpha, w_i)=T$. Then $v_1(\Diamond \alpha, w)=T$. Now let $v_1(\alpha, w_j)=F$. Then $v_1(\Diamond \alpha, w)=F$, which was to be proved. System B overcomes this counter-example. As with $S4$, a more liberal Strict Reiteration rule will be added to get a derivational system for B to allow the consequence.

In the general case, closure of possibility over the consequence relation does not hold in K or any stronger system based on it. That is,

$$\{\Diamond \alpha\} \not\vDash_{KI} \alpha.$$

Proof. It is enough to show that the consequence does not hold in a single instance, $\{\Diamond A, \Diamond B\} \not\vDash_{K} \Diamond (A \land B)$, where $\{A, B\} \vDash_{KI} A \land B$. Consider a KI-frame $Fr=<W,R>$ where $W=\{w, w_1, w_2\}$ and Rww_1, Rww_2. Let I be based on Fr, with the following assignments: $v_1(A, w_1)=T$, $v_1(B, w_1)=F$, $v_1(A, w_2)=F$, and $v_1(B, w_1)=T$. Now $v_1(\Diamond A, w)=T$ and $v_1(\Diamond B, w)=F$, by $SR \Diamond \Diamond \alpha$. However, it is also the case that $v_1(\Box A \land B, w_1)=F$ and $v_1(\Box A \land B, w_2)=F$. Therefore, $v_1(\Diamond (A \land B), w)=F$. No standard
restriction on accessibility will prevent a counter-example to be formulated, since nothing forces the assignment of specific truth-values to sentence-letters at a given world.