First Midterm
Philosophy 112
Winter 2002

Answer the following questions in the spaces below them.

1. (7 points each) Give the substitution instance using the constant ‘a’ for each of the following sentences of PL:
 a. \((\exists x)(\exists y)(Gxy \& (\forall z)(Gzxy \supset Bya))\)
 b. \((\forall y)(\exists x)(\forall z)(Xxz \supset (Gx \equiv Byav))\)

2. (9 points) Show all the subformulas of the following PL sentence:
 \((\exists x)[Vcx \& (\forall y)\sim(\forall z)Xxz \lor (\exists z)(Rzc \equiv Cxza)]\)
3. (7 points each) Symbolize the following sentences in PLI, using the symbolization key provided.

UD: Everything
 b: The Bush administration g: The GAO e: The Enron Corporation
 Sxy: x is suing y Axy x advised y Ixy: x influenced y
 Nxy: x is in y Px: x is a person

a. If anyone who advised the Bush administration influenced it, it was Enron.

b. Only those who were advised by Enron are being sued by the GAO.

c. Whoever in the Bush administration was advised by Enron was influenced by it.
4. (7 points each) Symbolize the following sentences in PLI, using the symbolization key provided.

UD: Positive integers (1, 2, 3, . . .)

f: four \(G_{xy} \): x is greater than y
o: one \(L_{xy} \): x is less than y

a. The positive integer that is less than all others is one.

b. No positive integer is greater than every positive integer.

c. Exactly two positive integers are less than four and greater than one.
5. (7 points each) Symbolize the following sentences in PLI, providing your own symbolization key.

Symbolization key

a. Small elephants eat more than large mice.

b. Elephants are afraid of mice, but not of themselves.

c. Every elephant is larger than some animal, but some animal is larger than every elephant.
6. (7 points each) Give fluent readings of the following sentences of *PLI*, using the symbolization key provided.

UD: Everything

d: Grey Davis Rx: x is a Republican Dx: x is a Democrat
r: Richard Riordan Cx: x is conservative Mx: x is a moderate
Px: x is a person Bxy: x can beat y

a. $(\forall x)(\forall y)((Cx \& Dx) \& Byx) \supset (My \& Ry))$

b. $(\exists x)[(Px \& (Rx \& Bxd)] \& (\forall y)([Py \& (Ry \& Byd)) \supset x = y)) \& x = r]$