Solutions to Selected Exercises Using Formal Semantics

Philosophy 112, Winter, 2005

January 25, 2005

2-5 a6)
To solve this problem, we must appeal to our general knowledge. I know of at least one unhappy U.S. citizen over 21, Kyle, who is not a millionaire. Let \(d \) be an arbitrary variable assignment. \((\text{Kyle}) \notin v(M)\), and \((\text{Kyle}) \notin v(H)\), so \((d[\text{Kyle}/x](x)) \) is not in either \(v(M) \) or \(v(H) \). So, \(d[\text{Kyle}/x] \) does not satisfy ‘Hx’ or ‘Mx’. So \(d[\text{Kyle}/x] \) satisfies ‘\(\neg Hx \)’ and ‘\(\neg Mx \)’. Therefore, \(d[\text{Kyle}/x] \) satisfies ‘\(\neg Hx \land \neg Mx \)’. Thus, \(d[\text{Kyle}/x] \) satisfies ‘\((Hx \land Mx) \lor (\neg Hx \land \neg Mx) \)’. So \(d \) satisfies ‘\((\exists x)[(Hx \land Mx) \lor (\neg Hx \land \neg Mx)] \)’. Since \(d \) is arbitrary, the sentence is satisfied by all variable assignments, and the sentence is true in the interpretation.

2-5 a8)
I know a number of U.S. citizens over 21 who are happy but not millionaires. Josh is one of them. \((\text{Josh}) \notin v(M)\), so for arbitrary variable assignment \(d \), \((d[\text{Josh}/x](x)) \notin v(M) \), in which case \(d[\text{Josh}/x] \) does not satisfy ‘Mx’. But \((\text{Josh}) \in v(H)\), and so \((d[\text{Josh}/x](x)) \in v(H) \) and \(d[\text{Josh}/x] \) satisfies ‘Hx’. Then \(d[\text{Josh}/x] \) does not satisfy ‘\(Hx \supset Mx \)’. Therefore, \(d \) does not satisfy ‘\((\forall x)[Hx \supset Mx] \)’. It follows that \(d \) satisfies ‘\((\forall x)[Hx \supset Mx] \supset (\exists x)\neg Mx \)’. Since \(d \) is arbitrary, all variable assignments satisfy the sentence, and the sentence is true in the given interpretation.

2-5 b7)
The number 5 is odd but is not greater than or equal to 17. Since \((5) \in v(O) \), and hence \((d[5/x](x)) \in v(O) \), \(d[5/x] \) satisfies ‘Ox’. Further, since \((5, 18) \notin v(K) \), so neither is \((d[5/x](x), v(a_{17})) \) a member of \(v(K) \). Hence \(d[5/x] \) does not satisfy ‘\(Kxa_{17} \)’, in which case it does not satisfy ‘\(\neg Kxa_{18} \land Kxa_{17} \)’. Therefore, \(d[5/x] \) does not satisfy ‘\(Ox \equiv (\neg Kxa_{18} \land Kxa_{17}) \)’. Since there is at least one \(x \)-variant of \(d \) whose value is a member of the domain that does not satisfy the open sentence, the universally quantified sentence ‘\((\forall x)[Ox \equiv (\neg Kxa_{18} \land Kxa_{17})] \)’ is false in the interpretation.
Let I be an interpretation which makes ‘$(\forall x)(Bx \land Lxe)$’ true. Then for all variable assignments d based on I, the sentence is satisfied. This holds just in case for all members u of the domain of I, $d[u/x]$ satisfies ‘$Bx \land Lxe$’. Thus, $d[u/x]$ satisfies both ‘Bx’ and ‘Lxe’, in which case it satisfies ‘Bx’. Then d satisfies ‘$(\forall x)Bx$’, and since this holds for all variable assignments based on I, the sentence is true in I. So given that the premise is true in an interpretation, so is the conclusion, and the argument is valid.