Solutions to Philosophy 112 Second Midterm Winter, 2001

1. Prove that the following derivability relation holds in *PD*.

 $\{(\exists x)(\forall y)[(Ay \And By) \supset Cxy], \, (\forall y)(Ay \supset By)\} \vdash (\forall y)(Ay \supset (\exists x)Cxy)$

1	$(\exists x)(\forall y)[(Ay \& By) \supset Cxy]$	Assumption
2	$(\forall y)(Ay \supset By)$	Assumption
3	$(\forall y)[(Ay \& By) \supset Cay]$	Assumption
4	Ac	Assumption
5	$Ac \supset Bc$	$2 \ \forall E$
6	Bc	$4 5 \supset E$
7	Ac &Bc	4 6 & I
8	$ (Ac \& Bc) \supset Cac$	$3 \forall \mathrm{E}$
9		$7 \ 8 \supset \mathrm{E}$
10	$ (\exists x)Cxc$	$9 \exists I$
11	$Ac \supset (\exists x)Cxc$	$410 \supset \mathrm{I}$
12	$ (\forall y)(Ay \supset (\exists x)Cxy)$	$11 \forall I$
13	$(\forall y)(Ay \supset (\exists x)Cxy)$	$1 \ 3\text{-}12 \ \exists \ \mathbf{E}$

2. Symbolize the following argument, revealing as much structure as possible and providing a symbolization key. Show that it is valid in PD.

Someone took something from the shelf. Anyone who took anything from the shelf was in the room last night. Therefore, someone was in the room last night.

UD: Ever	ything	
s: the she	If r: the room	
Px: x is a	x: x is a person Ixy: x was in y last night	
Txyz: x t	ook y from z	
1	$(\exists x)(Px \& (\exists y)Txys)$	Assumption
2	$(\forall \mathbf{x})[\mathbf{Px} \supset ((\exists \mathbf{y})\mathbf{Txys} \supset \mathbf{Ixr})]$	Assumption
3	Pa & $(\exists y)$ Tays	Assumption
4	Pa	3 & E
5	$(\exists y)$ Tays	3 & E
6	Tabs	Assumption
7	$\boxed{\operatorname{Pa} \supset ((\exists y) \operatorname{Tays} \supset \operatorname{Iar}))}$	$2 \forall E$
8	$ $ (\exists y)Tays \supset Iar	$4\ 7\supset E$
9	Iar	$5 8 \supset E$
10	Pa & Iar	49&I
11	$ $ ($\exists x$)(Px & Ixr)	$10 \exists I$
12	$(\exists x)(Px \& Ixr)$	5 6-11 \exists E
13	$(\exists x)(Px \& Ixr)$	1 3-12 \exists E

3. Prove the equivalence of the following two sentences in $PD+\!\cdot$

 $(\forall x)(Ax\supset Bx),\, {\sim}(\exists x)(Ax \ \& \ {\sim}Bx)$

1	$(\forall x)(Ax \supset Bx)$	Assumption
2	$(\forall \mathbf{x})(\sim \mathbf{A}\mathbf{x} \lor \mathbf{B}\mathbf{x})$	1 Impl
3	$(\forall \mathbf{x})(\sim \mathbf{A}\mathbf{x} \lor \sim \sim \mathbf{B}\mathbf{x})$	2 DN
4	$(\forall x) \sim (Ax \& \sim Bx)$	3 DeM
5	$\sim (\exists x)(Ax \& \sim Bx)$	4 QN
1	$\sim (\exists x)(Ax \& \sim Bx)$	Assumption
0		
2	$(\forall \mathbf{x}) \sim (\mathbf{A}\mathbf{x} \& \sim \mathbf{B}\mathbf{x})$	1 QN
$\frac{2}{3}$	$ \begin{array}{l} (\forall \mathbf{x}) \sim (\mathbf{A}\mathbf{x} \& \sim \mathbf{B}\mathbf{x}) \\ (\forall \mathbf{x})(\sim \mathbf{A}\mathbf{x} \lor \sim \sim \mathbf{B}\mathbf{x}) \end{array} $	$\begin{array}{c} 1 \hspace{0.1 cm} \mathrm{QN} \\ 2 \hspace{0.1 cm} \mathrm{DeM} \end{array}$
$\frac{2}{3}$	$(\forall \mathbf{x}) \sim (\mathbf{A}\mathbf{x} \& \sim \mathbf{B}\mathbf{x}) (\forall \mathbf{x}) (\sim \mathbf{A}\mathbf{x} \lor \sim \sim \mathbf{B}\mathbf{x}) (\forall \mathbf{x}) (\sim \mathbf{A}\mathbf{x} \lor \mathbf{B}\mathbf{x})$	1 QN 2 DeM 3 DN

4. Prove that the following is a theorem of PDI+.

$$Fa \equiv (\exists y)(y = a \& Fy)$$

1	Fa	Assumption
2	$\overline{(\forall x)}x = x$	= I
3	a = a	$1 \forall E$
4	a = a & Fa	$1 \ 3 \ \& \ I$
5	$(\exists y)(y = a \& Fa)$	$4 \exists I$
6	$(\exists y)(y = a \& Fa)$	Assumption
6 7	$(\exists y)(y = a \& Fa)$ $b = a \& Fa$	Assumption Assumption
6 7 8	$(\exists y)(y = a \& Fa)$ $b = a \& Fa$ Fa	Assumption Assumption 7 & E
6 7 8 9	$(\exists y)(y = a \& Fa)$ $\boxed{\begin{array}{c} b = a \& Fa}\\ \hline Fa\\ \hline Fa\end{array}}$	Assumption Assumption 7 & E 6 7-8 \exists E
6 7 8 9	$(\exists y)(y = a \& Fa)$ $b = a \& Fa$ Fa Fa	Assumption Assumption 7 & E 6 7-8 \exists E

5. Prove that the following set of sentences is inconsistent in PD.

 $\{(\forall x)(\forall y)(Fxy \supset Fyx), \, (\forall x)(\forall y)(Fxy \supset \sim Fyx), \, (\exists x)(\exists y)Fxy\}$

1	$(\forall x)(\forall y)(Fxy \supset Fyx)$	Assumption
2	$(\forall \mathbf{x})(\forall \mathbf{y})(\mathbf{F}\mathbf{x}\mathbf{y} \supset \sim \mathbf{F}\mathbf{y}\mathbf{x})$	Assumption
3	$(\exists x)(\exists y)Fxy$	Assumption
4	(∃y)Fay	Assumption
5	Fab	Assumption
6	$ \overline{(\forall y)}(Fay \supset Fya)$	$1 \forall E$
7	$ $ Fab \supset Fba	$6 \forall E$
8	Fba	$5 \ 7 \supset E$
9	$ (\forall y)(Fay \supset \sim Fya)$	$2 \forall E$
10	Fab $\supset \sim$ Fba	$9 \forall E$
11	$ $ $ $ \sim Fba	$8~10 \supset E$
12		8 11 \perp I
13		4 5-12 \exists E
14	<u>_</u>	3 4-13
15	$\sim (\exists x)(\exists y)Fxy$	$14 \perp E$
	•	