1. Prove that the following derivability relation holds in $P D$.
$\{(\exists \mathrm{x})(\forall \mathrm{y})[(\mathrm{Ay} \& \mathrm{By}) \supset \mathrm{Cxy}],(\forall \mathrm{y})(\mathrm{Ay} \supset \mathrm{By})\} \vdash(\forall \mathrm{y})(\mathrm{Ay} \supset(\exists \mathrm{x}) \mathrm{Cxy})$

$\begin{aligned} & (\exists \mathrm{x})(\forall \mathrm{y})[(\mathrm{Ay} \& \mathrm{By}) \supset \mathrm{Cxy}] \\ & (\forall \mathrm{y})(\mathrm{Ay} \supset \mathrm{By}) \end{aligned}$	Assumption Assumption
$(\forall y)[($ Ay \& By $) ~ \supset ~ C a y] ~$	Assumption
Ac	Assumption
$\mathrm{Ac} \supset \mathrm{Bc}$	$2 \forall \mathrm{E}$
Bc	$45 \supset \mathrm{E}$
Ac \& Bc	46 \& I
$(\mathrm{Ac} \& \mathrm{Bc}) \bigcirc \mathrm{Cac}$	$3 \forall \mathrm{E}$
Cac	$78 \supset \mathrm{E}$
$(\exists \mathrm{x}) \mathrm{Cxc}$	$9 \exists \mathrm{I}$
$\mathrm{Ac} \supset(\exists \mathrm{x}) \mathrm{Cxc}$	$4-10$ I
$(\forall y)($ Ay $\supset(\exists \mathrm{x}) \mathrm{Cxy})$	$11 \forall$ I
$(\forall y)($ Ay $\supset(\exists \mathrm{x}) \mathrm{Cxy})$	$13-12 \exists \mathrm{E}$

2. Symbolize the following argument, revealing as much structure as possible and providing a symbolization key. Show that it is valid in $P D$.

Someone took something from the shelf. Anyone who took anything from the shelf was in the room last night. Therefore, someone was in the room last night.

UD: Everything

$s:$ the shelf	$r:$ the room
$P x: x$ is a person	Ixy: x was in y last night

Txyz: x took y from z

1	$(\exists \mathrm{x})(\mathrm{Px} \& \&(\exists \mathrm{y}) \mathrm{Txys})$	Assumption
2	$(\forall \mathrm{x})[\mathrm{Px} \supset((\exists \mathrm{y})$ Txys $\supset \mathrm{Ixr})]$	Assumption
3	Pa \& ($\exists y$)Tays	Assumption
4	Pa	3 \& E
5	($\exists \mathrm{y}$) Tays	$3 \& \mathrm{E}$
6	Tabs	Assumption
7	Pa $\supset((\exists \mathrm{y})$ Tays $\supset \mathrm{Iar})$)	$2 \forall \mathrm{E}$
8	$(\exists y)$ Tays \supset Iar	$47 \supset \mathrm{E}$
9	Iar	$58 \supset \mathrm{E}$
10	Pa \& Iar	49 \& I
11	$(\exists x)($ Px \& Ixr)	$10 \exists \mathrm{I}$
12	$(\exists \mathrm{x})(\mathrm{Px} \& \mathrm{Ixr})$	5 6-11 $\exists \mathrm{E}$
13	$(\exists \mathrm{x})(\mathrm{Px} \& \mathrm{Ixr})$	$13-12 \exists \mathrm{E}$

3. Prove the equivalence of the following two sentences in $P D+$.
$(\forall \mathrm{x})(\mathrm{Ax} \supset \mathrm{Bx}), \sim(\exists \mathrm{x})(\mathrm{Ax} \& \sim \mathrm{Bx})$

1	$(\forall \mathrm{x})(\mathrm{Ax} \supset \mathrm{Bx})$	Assumption
2	$(\forall \mathrm{x})(\sim \mathrm{Ax} \vee \mathrm{Bx})$	1 Impl
3	$(\forall \mathrm{x})(\sim \mathrm{Ax} \vee \sim \sim \mathrm{Bx})$	2 DN
4	$(\forall \mathrm{x}) \sim(\mathrm{Ax} \& \sim \mathrm{Bx})$	3 DeM
5	$\sim(\exists \mathrm{x})(\mathrm{Ax} \& \sim \mathrm{Bx})$	4 QN
1	$\sim(\exists \mathrm{x})(\mathrm{Ax} \& \sim \mathrm{Bx})$	Assumption
2	$(\forall \mathrm{x}) \sim(\mathrm{Ax} \& \sim \mathrm{Bx})$	1 QN
3	$(\forall \mathrm{x})(\sim \mathrm{Ax} \vee \sim \sim \mathrm{Bx})$	2 DeM
4	$(\forall \mathrm{x})(\sim \mathrm{Ax} \vee \mathrm{Bx})$	3 DN
5	$(\forall \mathrm{x})(\mathrm{Ax} \supset \mathrm{Bx})$	4 Impl

4. Prove that the following is a theorem of $P D I+$.
$\mathrm{Fa} \equiv(\exists \mathrm{y})(\mathrm{y}=\mathrm{a} \& \mathrm{Fy})$

1	Fa	Assumption
2	$(\forall \mathrm{x}) \mathrm{x}=\mathrm{x}$	= I
3	$\mathrm{a}=\mathrm{a}$	$1 \forall \mathrm{E}$
4	$\mathrm{a}=\mathrm{a} \& \mathrm{Fa}$	13 \& I
5	$(\exists \mathrm{y})(\mathrm{y}=\mathrm{a}$ \& Fa)	$4 \exists \mathrm{I}$
6	$(\exists \mathrm{y})(\mathrm{y}=\mathrm{a} \& \mathrm{Fa})$	Assumption
7	$\mathrm{b}=\mathrm{a} \& \mathrm{Fa}$	Assumption
8	Fa	7 \& E
9	Fa	$67-8 \exists \mathrm{E}$

5. Prove that the following set of sentences is inconsistent in $P D$.
$\{(\forall \mathrm{x})(\forall \mathrm{y})(\mathrm{Fxy} \supset \mathrm{Fyx}),(\forall \mathrm{x})(\forall \mathrm{y})(\mathrm{Fxy} \supset \sim \mathrm{Fyx}),(\exists \mathrm{x})(\exists \mathrm{y}) \mathrm{Fxy}\}$

1	$(\forall \mathrm{x})(\forall \mathrm{y})(\mathrm{Fxy} \supset \mathrm{Fyx})$	Assumption
2	$(\forall \mathrm{x})(\forall \mathrm{y})(\mathrm{Fxy} \supset \sim \mathrm{Fyx})$	Assumption
3	($\exists \mathrm{x})(\exists \mathrm{y}) \mathrm{Fxy}$	Assumption
4	(ヨy)Fay	Assumption
5	Fab	Assumption
6	$(\forall y)($ Fay $\supset \mathrm{Fya})$	$1 \forall \mathrm{E}$
7	$\mathrm{Fab} \supset \mathrm{Fba}$	$6 \forall \mathrm{E}$
8	Fba	$57 \supset \mathrm{E}$
9	$(\forall y)($ Fay $\supset \sim$ Fya)	$2 \forall \mathrm{E}$
10	Fab $\supset \sim$ Fba	$9 \forall \mathrm{E}$
11	$\sim \mathrm{Fba}$	$810 \supset \mathrm{E}$
12	\perp	$811 \perp \mathrm{I}$
13	\perp	4 5-12 $\exists \mathrm{E}$
14	\perp	3 4-13
15	$\sim(\exists \mathrm{x})(\exists \mathrm{y}) \mathrm{Fxy}$	$14 \perp \mathrm{E}$

