Second Midterm Solutions

Philosophy 112

Winter 2003
Please work all the problems in the space provided. Each problem is worth 20 points. You may use only the rule set noted on the individual problems, except that you may use the falsum rule on any problem. Please note that with $P D+$ and $P D I$, you are not required to use any of extra rules provided by those rule-sets, though in the case of $P D I$, the use of identity rules may be unavoidable.

1. Prove that the following is a theorem of $P D$.
$(\forall \mathrm{x}) \mathrm{Fx} \vee(\exists \mathrm{x}) \sim \mathrm{Fx}$

1	$\sim((\forall \mathrm{x}) \mathrm{Fx} \vee(\exists \mathrm{x}) \sim \mathrm{Fx})$	
2	Assumption	
2	$\sim \mathrm{Fa}$	
3	$(\exists \mathrm{x}) \sim \mathrm{Fx}$	$2 \exists \mathrm{I}$
4	$(\forall \mathrm{x}) \mathrm{Fx} \vee(\exists \mathrm{x}) \sim \mathrm{Fx})$	$3 \vee \mathrm{I}$
5	$\sim((\forall \mathrm{x}) \mathrm{Fx} \vee(\exists \mathrm{x}) \sim \mathrm{Fx})$	1 R
6	Fa	$2-5 \sim \mathrm{E}$
7	$(\forall \mathrm{x}) \mathrm{Fx}$	$6 \forall \mathrm{I}$
8	$(\forall \mathrm{x}) \mathrm{Fx} \vee(\exists \mathrm{x}) \sim \mathrm{Fx}$	$7 \vee \mathrm{I}$
9	$(\forall \mathrm{x}) \mathrm{Fx}) \vee(\exists \mathrm{x}) \sim \mathrm{Fx}$	$1-8 \sim \mathrm{E}$

2. Prove the equivalence of the following two sentences of $P D$.

$$
\begin{gathered}
\sim(\forall x) \mathrm{Fx} \\
(\exists \mathrm{y}) \sim \mathrm{Fy}
\end{gathered}
$$

1	$\sim(\forall \mathrm{x}) \mathrm{Fx}$	Assumption
2	$\sim(\exists \mathrm{y}) \sim \mathrm{Fy}$	Assumption
3	$\mid \sim \mathrm{Fa}$	Assumption
4	$(\exists \mathrm{y}) \sim \mathrm{Fy}$	$3 \exists \mathrm{I}$
5	$\underset{(\exists \mathrm{y}) \sim \mathrm{Fy}}{\sim}$	2 R
6	Fa	$2-5 \sim \mathrm{E}$
7	$(\forall \mathrm{x}) \mathrm{Fx}$	$6 \forall \mathrm{I}$
8	$\sim(\forall \mathrm{x}) \mathrm{Fx}$	1 R
9	$(\exists \mathrm{y}) \sim \mathrm{Fy}$	$1-8 \sim \mathrm{E}$

1	$(\exists \mathrm{y}) \sim \mathrm{Fy}$	
2	$\sim \mathrm{Fa}$	
Assumption		
Assumption		
3	$\sim(\forall \mathrm{x}) \mathrm{Fx}$	Assumption
4	$\|$Fa $3 \forall \mathrm{E}$ 5 $\sim \mathrm{Fa}$ 6 2 R 7 $\sim(\forall \mathrm{x}) \mathrm{Fx}$	$2-5 \sim \mathrm{I}$
7	$\sim(\forall \mathrm{x}) \mathrm{Fx}$	$12-6 \exists \mathrm{E}$

3. Prove that the following derivability relation holds in $P D+$. $\{(\forall \mathrm{x})(\mathrm{Qx} \vee \mathrm{Ixb})\} \vdash(\exists \mathrm{x}) \mathrm{Qx} \vee(\forall \mathrm{x}) \mathrm{Ixb}$

1	$(\forall \mathrm{x})(\mathrm{Qx} \vee \mathrm{Ixb})$	Assumption
2	$\sim((\exists \mathrm{x}) \mathrm{Qx} \vee(\forall \mathrm{x}) \mathrm{Ixb})$	Assumption
3	$\sim(\exists \mathrm{x}) \mathrm{Qx} \& \sim(\forall \mathrm{x}) \mathrm{Ixb}$	2 DeM
4	$\sim(\exists \mathrm{x}) \mathrm{Qx}$	$3 \& \mathrm{E}$
5	$(\forall \mathrm{x}) \sim \mathrm{Qx}$	4 QN
6	$\sim \mathrm{Qa}$	$5 \forall \mathrm{E}$
7	$\mathrm{Qa} \vee \mathrm{Iab}$	$1 \forall \mathrm{E}$
8	Iab	67 DS
9	$(\forall \mathrm{x}) \operatorname{Ixb}$	$8 \forall \mathrm{I}$
10	$(\exists \mathrm{x}) \mathrm{Qx} \vee(\forall \mathrm{x}) \operatorname{Ixb}$	$9 \vee \mathrm{I}$
11	$(\exists \mathrm{x}) \mathrm{Qx} \vee(\forall \mathrm{x}) \mathrm{Ixb}$	$2-10 \sim \mathrm{E}$

4. Show that the following argument is valid in PDI.

The current President of the United States was born in Connecticut. Connecticut and Texas are different, and nothing has more than one birthplace. Therefore, no current president of the United States was born in Texas.

```
\((\exists \mathrm{x})((\mathrm{Pxu} \&(\forall \mathrm{y})(\mathrm{Pyu} \supset \mathrm{x}=\mathrm{y})) \& B \mathrm{Bc})\)
\(\sim \mathrm{c}=\mathrm{t} \&(\forall \mathrm{x})(\forall \mathrm{y})(\forall \mathrm{z})(\mathrm{Bxy} \supset(\mathrm{Bxz} \supset \mathrm{y}=\mathrm{z}))\)
\(\sim(\exists \mathrm{x})(\mathrm{Pxu} \& \mathrm{Bxt})\)
```

$\begin{aligned} & (\exists \mathrm{x})((\operatorname{Pxu} \&(\forall \mathrm{y})(\operatorname{Pyu} \supset \mathrm{x}=\mathrm{y})) \& \mathrm{Bxc}) \\ & \sim \mathrm{c}=\mathrm{t} \&(\forall \mathrm{x})(\forall \mathrm{y})(\forall \mathrm{z})(\mathrm{Bxy} \supset(\mathrm{Bxz} \supset \mathrm{y}=\mathrm{z})) \end{aligned}$	Assumption Assumption
($\exists \mathrm{x}$)(Pxu \& Bxt)	Assumption
$($ Pau \& $(\forall y)(\mathrm{Pyu} ~ \supset \mathrm{a}=\mathrm{y})$) \& Bac	Assumption
Bac	4 \& E
Pau \& $(\forall y)($ Pyu $\supset \mathrm{a}=\mathrm{y})$	$4 \& \mathrm{E}$
$(\forall \mathrm{y})(\mathrm{Pyu} \supset \mathrm{a}=\mathrm{y})$	6 \& E
$(\forall \mathrm{x})(\forall \mathrm{y})(\forall \mathrm{z})(\mathrm{Bxy} \supset(\mathrm{Bxz} \supset \mathrm{y}=\mathrm{z}))^{\text {a }}$	2 \& E
$(\forall \mathrm{y})(\forall \mathrm{z})(\mathrm{Bay} \supset(\mathrm{Baz} \supset \mathrm{y}=\mathrm{z}))$	$8 \forall \mathrm{E}$
$(\forall \mathrm{z})(\mathrm{Bac} \supset(\mathrm{Baz} \supset \mathrm{c}=\mathrm{z}))^{\text {a }}$	$9 \forall \mathrm{E}$
$\mathrm{Bac} \supset($ Bat $\supset \mathrm{c}=\mathrm{t})$	$10 \forall \mathrm{E}$
Bat $\supset \mathrm{c}=\mathrm{t}$	$5111 \supset \mathrm{E}$
Pru \& Brt	Assumption
Pru	13 \& E
Brt	13 \& E
Pru $\supset \mathrm{a}=\mathrm{r}$	$7 \forall \mathrm{E}$
$\mathrm{a}=\mathrm{r}$	$1416 \supset \mathrm{E}$
Bat	$1517=\mathrm{E}$
$\mathrm{c}=\mathrm{t}$	$1218 \supset \mathrm{E}$
$\sim \mathrm{c}=\mathrm{t}$	2 \& E
$\mathrm{c}=\mathrm{t} \& \sim \mathrm{c}=\mathrm{t}$	1920 \& I
$\mathrm{c}=\mathrm{t} \& \sim \mathrm{c}=\mathrm{t}$	$313-21 \exists \mathrm{E}$
$\mathrm{c}=\mathrm{t} \& \sim \mathrm{c}=\mathrm{t}$	$14-22 \exists \mathrm{E}$
$\mathrm{c}=\mathrm{t}$	23 \& E
$\sim \mathrm{c}=\mathrm{t}$	23 \& E
$\sim(\exists \mathrm{x})($ Pxu \& Bxt)	$3-25 \sim \mathrm{E}$

5. Using a symbolization key that reveals as much logical structure as possible, symbolize the following sentences in $P L$. Then prove that the set of $P L$ sentences is inconsistent in $P D+$.

Only an earlier event causes an event. One event is earlier than another only if the later event is not earlier than the earlier one. Some event causes every event.

UD: The set of all events
Exy: x is earlier than y
Cxy: x causes y
$(\forall \mathrm{x})(\forall \mathrm{y})(\mathrm{Cxy} \supset \mathrm{Exy})$
$(\forall \mathrm{x})(\forall \mathrm{y})($ Exy $\supset \sim \mathrm{Eyx})$
$(\exists \mathrm{x})(\forall \mathrm{y}) \mathrm{Cxy}$

1	$(\forall \mathrm{x})(\forall \mathrm{y})($ Cxy \supset Exy $)$	Assumption
2	$(\forall \mathrm{x})(\forall \mathrm{y})($ Exy $\supset \sim$ Eyx $)$	Assumption
3	$(\exists \mathrm{x})(\forall \mathrm{y})$ Cxy	Assumption
4	$(\forall \mathrm{y})$ Cay	Assumption
5	Caa	$4 \forall \mathrm{E}$
6	$(\forall \mathrm{y})($ Cay \supset Eay $)$	$1 \forall \mathrm{E}$
7	Caa \supset Eaa	$6 \forall \mathrm{E}$
8	Eaa	$57 \supset \mathrm{E}$
9	$(\forall \mathrm{y})($ Eay $\supset \sim$ Eya $)$	$2 \forall \mathrm{E}$
10	Eaa $\supset \sim$ Eaa	$8 \forall \mathrm{E}$
11	\sim Eaa	$810 \supset \mathrm{E}$
12	\perp	$811 \perp \mathrm{I}$
13	\perp	$34-12 \exists \mathrm{E}$
14	$\sim(\exists \mathrm{x})(\forall \mathrm{y}) \mathrm{Cxy}$	$13 \perp \mathrm{E}$

