Logical Truth, Contradictions, Inconsistency, and Logical Equivalence

Logical Truth

- The semantical concepts of logical truth, contradiction, inconsistency, and logical equivalence in Predicate Logic are straightforward adaptations of the corresponding concepts in Sentence Logic.
- A closed sentence **X** of Predicate Logic is **logically true**, ⊨ **X**, if and only if **X** is true in all interpretations.
- The logical truth of a sentence is proved directly using general reasoning in semantics.
- Given soundness, one can also prove the logical truth of a sentence **X** by providing a derivation with no premises.
- The result of the derivation is that **X** is **theorem**, \vdash **X**.

An Example

- $\models (\forall x)Fx \supset (\exists x)Fx$.
 - Suppose d satisfies ' $(\forall x)Fx$ '.
 - Then all x-variants of d satisfy 'Fx'.
 - Since the domain D is non-empty, some x-variant of d satisfies 'Fx'.
 - So d satisfies ' $(\exists x)Fx$ '
 - Therefore d satisfies ' $(\forall x)Fx \supset (\exists x)Fx$ ', QED.
- $\vdash (\forall x)Fx \supset (\exists x)Fx$.

1	(∀x)Fx	Р
2	Fa	$1 \; \forall \; E$
3	(∃x)Fx	$1 \exists I$

Contradictions

- A closed sentence **X** of Predicate Logic is a **contradiction** if and only if **X** is false in all interpretations.
- A sentence **X** is false in all interpretations if and only if its negation \sim **X** is true on all interpretations.
- Therefore, one may directly demonstrate that a sentence is a contradiction by proving that its negation is a logical truth.
- If the ~X of a sentence is a logical truth, then given completeness, it is a theorem, and hence ~X can be derived from no premises.

- If a sentence **X** is such that if it is true in any interpretation, both **Y** and ~**Y** are true in that interpretation, then **X** cannot be true on any interpretation.
- Given soundness, it follows that if **Y** and ~**Y** are derivable from **X**, then **X** is a contradiction.

An Example

- '($\forall x$)(Fx & \sim Fx)' is a contradiction.
 - Suppose that a variable assignment **d** satisfies ' $(\forall x)$ (Fx & ~Fx)'.
 - Then all x-variants d[u/x] of d satisfy 'Fx & \sim Fx'.
 - Then d[u/x] satisfies 'Fx'.
 - Then d[u/x] satisfies '~Fx'.
 - Then d[u/x] does not satisfy 'Fx', a contradiction.
 - Therefore, no variable assignment **d** satisfies ' $(\forall x)$ (Fx & \sim Fx)', QED.

1	$(\forall x)(Fx\& \sim Fx)$	Р
2	$Fa\& \sim Fa$	$1 \; \forall \; E$
3	Fa	2 & E
4	\sim Fa	2 & E

Inconsistent Sets of Sentences

- A set of closed sentences of Predicate Logic is **consistent** if and only if there is an interpretation (a **model**) which makes all the sentences in the set true.
- A set of closed sentences of Predicate Logic is **inconsistent** just in case it is not consistent.
- Therefore, a set of closed sentences of Predicate Logic is inconsistent just in case it has no models.
- It follows from these definitions and that of a contradiction that a finite collection of sentences is inconsistent if and only if the conjunction of the sentences is a contradiction.
 - There is no model for a set of sentences *X* if and only if in every interpretation, each of the sentences of *X* is false.
 - This holds if and only if in every interpretation, the conjunction of the sentences of X is false.
 - This holds if and only if the conjunction of the sentences of *X* is a contradiction, QED.

Demonstrating Inconsistency

- The consistency of a set of closed sentences can be demonstrated by providing a single interpretation which makes all the sentences in the set true.
- A direct demonstration of inconsistency requires general reasoning.
- Inconsistency can be proved indirectly be either of two ways.
 - Derive a contradiction from the set of inconsistent sentences taken as premises.
 - Derive the negation of the conjunction of the sentences from no premises.

An Example

- {' $(\forall x)Fx'$, '~ $(\exists x)Fx'$ } is inconsistent.
 - Suppose there is an interpretation which makes both '($\forall x$)Fx' and ' \sim ($\exists x$)Fx' true.
 - Then for a given variable assignment **d**, **d** satisfies both ' $(\forall x)Fx$ ' and ' $\sim (\exists x)Fx$ '.
 - Therefore, all x-variants d[u/x] of d satisfy 'Fx'.
 - So **d** satisfies ' $(\exists x)Fx$ '.
 - It also follows that **d** satisfies ' $\sim(\exists x)Fx$ ', which yields a contradiction.
 - So, there is no interpretation which makes both ' $(\forall x)Fx$ ', ' $\sim(\exists x)Fx$ ' true, QED.

The Example Continued

1	$(\forall x)Fx\& \sim (\exists x)Fx$	Р
2	(∀x)Fx	1 & E
3	Fa	$2 \forall E$
4	(∃x)Fa	3∃I
5	$\sim (\exists x)Fx$	1 & E

Logical Equivalence

- Two closed sentences of Predicate Logic are **logically equivalent** if and only if they have the same truth value in all interpretations.
- The logical equivalence of **X** and **Y** holds as well when **X** is true in all interpretations where **Y** is true, and **Y** is true in all interpretations where **X** is true.
- Alternatively, two sentences **X** and **Y** are logically equivalent just in case their bicondition **X** ≡ **Y** is a logical truth.

- Logical equivalence is demonstrated directly through general reasoning.
- It is proved indirectly with two derivations, each having one of the sentences as a premise and the other as a conclusion.