
Multiple Quantifiers: Syntax and Semantics

Governance

• We have stated that a quantifier governs the shortest full sentence following it.

• Thus far, we have restricted our attention to sentences all of whose components
are governed by a single quantifier, if any.

• In the rest of the course, we will consider sentences some of whose components
are governed by more than one quantifier.

– (∀x)(∃y)Lxy.

– ‘(∃y)’ governs ‘Lxy’.

– ‘(∀x)’ governs ‘(∃y)Lxy’.

• The use of multiple quantifiers greatly increases the expressive power of Predi-
cate Logic.

Scope and Bound Variables

• We have stated that a quantifer binds all occurrences of its variable in the sen-
tence it governs.

– ‘(∃y)’ governs ‘Lxy’ and so it binds ‘y’ in ‘(∃y)Lxy’.

• We now state that thescopeof a quantifier is the sentence governed by the quan-
tifier.

• We state in a preliminary way that a variableu is bound if and only if it occurs
in the scope of a quantifier (∀u) or (∃u) containing it.

– ‘y’ is bound by ‘(∃y)’ in ‘( ∃y)Lxy’.

Free Variables and Binding

• A variable isfree if and only if it is not bound.

– ‘y’ is free in ‘(∃x)Lxy’.

• A problem case arises when a variable occurs within the scope of two quantifiers
containing it.

– (∃x)[(∀x)Lxa⊃ Lxb]

• Is the ‘x’ in ‘Lxa’ bound by ‘(∃x)’, by ‘(∀x)’, or both?

• We solve the problem by saying that a quantifier binds only the free variables in
the shortest full sentence following it.

– ‘x’ in ‘Lxa’ is bound by ‘(∀x)’ only, since it is not free in ‘(∀x)Lxa⊃ Lxb’.

• It may be easiest to think of binding as occurring at the initial application of the
quantifier as the sentence is being built up.
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Substitution Instances with Multiple Quantification

• The original definition of a substitution instance is inadequate when a variable
occurs within the scope of two quantifiers containing it.

• Using the name ‘c’, how do we instantiate ‘(∃x)[(∀x)Lxa⊃ Lxb]’?

– (∀x)Lca⊃ Lcb?

– (∀x)Lxa⊃ Lcb?

• The answer lies in the fact that the initial ‘x’ in ‘(∀x)Lxa ⊃ Lxb’ is bound to
‘(∀x)’ and thus should not be replaced by a name.

• Thus a substitution instance is formed when all free occurrences of the variable
occuring in sentence governed by the quantifier are replaced by names (or more
generally, by constant terms).

Semantics for Sentences with Multiple Quantifiers

• The interpretation of sentences with multiple quantifiers is an extension of the
semantics for sentences with a single quantifier.

• A variable assignmentd satisifies ‘(∀x)(∀y)Lxy’ just in case for allo in the do-
main,d[o/x] satisfies ‘(∀y)Lxy’.

• The x-variantd[o/x] satisfies ‘(∀x)Lxy’ just in case for allo in the domain,d[o/x,
o/y] satisfies ‘Lxy’.

• In other words, the y-variants ofd[o/x] for all o in the domain satisfy ‘Lxy’.

• Thus, we use variants of variants (of variants. . .) until we arrive at atomic sen-
tences.

An Example

• I = {D, v}, D = {Adam, Eve}, v(L) = { 〈Adam, Adam〉, 〈Adam, Eve〉}

• The target sentence is ‘(∃x)(∀y)Lxy’.

• We can see by inspection that the sentence is true in I, since there is one member
of the domain, Adam, who bears the relation indicated by ‘L’ to every member
of the domain.

• That is, d[Adam/x, Adam/y] satisfies ‘Lxy’, as does d[Adam/x, Eve/y].

• So, d[Adam/x] satsfies ‘(∀y)Lxy’, in which case there is an x-variant of d which
satisfies the open sentence, and d satisfies ‘(∃x)(∀y)Lxy’.

• Because the choice of d was arbitrary, the sentence is satisifed by all variable
assignments and hence is true.
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Another Example

• I = {D, v}, D = {Adam, Eve}, v(L) = { 〈Adam, Adam〉, 〈Adam, Eve〉}

• The target sentence is ‘(∀x)(∃y)Lxy’.

• We can see by inspection that the sentence is false in I, since there is one member
of the domain, Eve, who does not bear the relation indicated by ‘L’ to at least
one member of the domain.

• That is, d[Eve/x, Adam/y] does not satisfy ‘Lxy’, nor does d[Eve/x, Eve/y].

• So, d[Eve/x] does not satisfy ‘(∃y)Lxy’, in which case there is an x-variant of d
which does not satisfy the open sentence, and d does not satisfy ‘(∀x)(∃y)Lxy’.

• Because the choice of d was arbitrary, the sentence is satisifed by no variable
assignments and hence is false.

Multiple Quantifiers in Substitutional Semantics

• Recall that a universally quantified sentences is true in the substitutional seman-
tics just in case all its substitution instances are true, and an existentially quanti-
fied sentence is true just in case at least one of its substitution instances is true.

• For multiple quantification, these truth-definitions are iterated and involve sub-
stitution instances of substitution instances.

• For example ‘(∀x)(∃y)Lxy’ is true in an interpretationI if and only if all substi-
tution instances ‘(∃y)Lay’, ‘(∃y)Lby’, etc. are true in the interpetation.

• This holds just in case at least one substitution instance of (∃y)Lay’, i.e., ‘Laa,’,
‘Lab’, etc. is true in the interpretation, and so for the substitution instances of
‘(∃y)Lby’, etc.

Logical Equivalence

• Two closed sentences of Predicate Logic are logically equivalent if and only if
they have the same truth value in all interpretations.

• For example, ‘(∀x)∼Fx’ is logically equivalent to ‘∼(∃x)Fx’.

• An interpretationI makes ‘(∀x)∼Fx’ true if and only if for all d, d satisifies
‘(∀x)∼Fx’.

• This holds just in case for allo in the domain ofI , d[o/x] satisfies ‘∼Fx’, and
thusd[o/x] does not satisfy ‘Fx’ for allo in the domain.

• But this holds just in cased does not satisfy ‘(∃x)Fx’, andd satisfies ‘∼(∃x)Fx,
which holds for alld, QED.
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Logical Equivalence for Open Sentences

• We should like to be able to say that ‘(∀x)∼Lxy’ is logically equivalent to
‘∼(∃x)Lxy’.

• However, our definition of logical equivalence covers only closed sentences.

• It is easy to extend the notion of logical equivalence to open sentences.

• Two open sentences are logically equivalent if and only if they are satisfied by
exactly the same variable assignments in any interpretation.

An Example

• ‘(∀x)∼Lxy’ is logically equivalent to ‘∼(∃x)Lxy’.

• A variable assignmentd[oi/y] satisfies ‘(∀x)∼Lxy’ if and only if for any o in the
domain,d[oi/x, o/y] satisfies ‘∼Lxy’.

• This holds if and only if for allo in the domain,d[oi/x, o/y] does not satisfy
‘Lxy’.

• This holds if and only ifd[oi/x] does not satisfy ‘(∃x)Lxy’.

• This holds if and only ifd[oi/x] satisfies ‘∼(∃x)Lxy’, QED.

A Law of Substitution

• If X is the result of substituting a logically equivalent sentence for a sentence
occurring inY, thenX andY are logically equivalent.

• For example:

– ‘(∃x)(∀y)∼Lxy’ is equivalent to ‘(∃x)∼(∃y)Lxy’.

– ‘(∀x)(∀y)Fxy’ is equivalent to ‘(∀x)(∀z)Fxz’.

– ‘(∀x)(∃y)Fxy’ is equivalent to ‘(∀y)(∃x)Fyx’.

• This results holds because of the fact that the substituting and substituted sen-
tences are satisfied by exactly the same variable assignments, so the truth-values
of X andY are unaffected by the substitution.

Logical Equivalence and Substitutional Semantics

• Logical equivalence is not straightforwardly defined in substitutional semantics.

• The problem is that open sentences such as ‘(∃x)∼Lxy’ have no truth-value and
are not subsitution instances of any sentence.
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• One could define a “name-replacement” as of an open sentence as a sentence
resulting from replacing the occurrences of a free variable with an name, as
‘(∃x)∼Lxa’.

• Then two open sentences with one free variable are logically equivalent just in
case all name-replacements have the same truth-value.

– ‘(∃x)∼Lxa’ is true if and only if ‘∼(∀x)Lxa’ is true, etc.

• Alternatively, one could hold that two open sentences are equivalent if and only
if the universal generalization of their biconditional is logically true.

– � (∀y)[(∃x)∼Lxy ≡ ∼(∀x)Lxy].
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