Transcription and Restricted Quantifiers

Differences Among Quantifier Expressions

- Some English quantifier expressions are neutral with respect to the range of objects whose quantity they express.
 - Any, every, all, whatever some
 - Anything, everything something
 - There is, at least one is
- Other quantifier expressions apply only to a limited range of objects.
 - Anyone, anybody someone, somebody (persons)
 - Anywhere, everywhere somewhere (places)
 - Whenever, always when sometimes (times)

Limiting the Domain

- One way of transcribing sentences with restricted quantifiers is to limit the domain to the objects to which the quantifiers are supposed to apply.
 - D = x: x is a person, so ' $(\forall x)$ ' and ' $(\exists x)$ ' apply only to persons.
 - 'Everybody is happy' is transcribed as ' $(\forall x)$ Hx', where Hx: x is happy.
- However, this only allows us to talk about items in the domain, so that in the last example, we could not transcribe 'Everybody is happy sometimes'.

Restricted Quantifiers

- One way to transcribe sentences with a mixture of types of quantifier expressions is to create a new kind of quantifier in Predicate Logic: the **restricted quantifier**.
- We choose a predicate letter to symbolize the restricted range of objects.
 - 'P' stands for the set of all persons.
 - We write ' $(\forall x)_P$ ' for 'everyone', and ' $(\exists x)_P$ ' for 'someone'.
 - 'Everyone is happy' is transcribed as ' $(\forall x)_P$ Hx'.

We can mix restricted quantifiers to symbolize sentences containing more than one limited quantifier expression.

- 'T' stands for the set of all times.
- 'Everyone is happy sometimes' is transcribed as ' $(\forall x)_P(\exists y)_T Hxy$ ', where Hxy: x is happy at y.

Semantics for Restricted Quantifiers

- Tarski-style semantics can be used to specify satisfaction-conditions for sentences with restricted quantifiers.
- For each restriction represented by a one-place predicate **S**, we generate the set **r**(**S**) from **v**(**S**) by stripping off the angle brackets.

- Let $v(P) = \{ \langle Adam \rangle, \langle Eve \rangle \}; r(P) = \{ Adam, Eve \}.$

• Then we say that d satisfies $(\exists u)_S P(u)$ if and only if for some object $o \in r(S)$, d[o/u] satisfies P(u).

- Let $v(B) = \{ \langle Adam \rangle \}$; then d[Adam/x] satisfies 'Bx', so d satisfies ' $(\exists x)_P Bx'$.

• Similarly, d satisfies $(\forall u)_S P(u)$ if and only if for all objects $o \in r(S)$, d[o/u] satisfies P(u).

Eliminating Restricted Quantifiers

- Restricted quantifiers can be eliminated in favor of other constructions without change in truth-value.
- $(\exists u)_{\mathbf{S}} \mathbf{P}(\mathbf{u})$ is equivalent to $(\exists u)(\mathbf{S}(\mathbf{u}) \& \mathbf{P}(\mathbf{u}))$.

- ' $(\exists x)_P Bx$ ' is equivalent to ' $(\exists x)(Px \& Bx)$ '.

• $(\forall u)_{\mathbf{S}} \mathbf{P}(u)$ is equivalent to $(\forall u)(\mathbf{S}(u) \supset \mathbf{P}(u))$.

- ' $(\forall x)_P Bx$ ' is equivalent to ' $(\forall x)(Px \supset Bx)$ '.

- The replacement of one form for the other (when authorized) may occur in an internal part of a sentence.
 - ' $(\exists x)_{\mathbf{P}}Lxe \supset (\exists x)_{\mathbf{P}}Lex$ ' is equivalent to ' $(\exists x)(Px \& Lxe) \supset (\exists x)(Px \& Lex)$ '.

Proof of Equivalence for Restricted Existentials

- (∃u)_SP(u) is true in I if and only if (iff) it is satisfied by all variable assignments d based on I.
- Let **I** be an arbitrary interpretation and **d** an arbitrary variable assignment based on **I**.
- d satisfies $(\exists u)_{\mathbf{S}} \mathbf{P}(u)$ iff some object $\mathbf{o} \in \mathbf{r}(\mathbf{S})$, d[o/u] satisfies $\mathbf{P}(u)$,
- iff for some object o in D, d[o/u] satisfies P(u), and the one-tuple ⟨o⟩ ∈ v(S) [by the definition of r(S)],
- iff for some object $o \in D$, d[o/u] satisfies P(u) and d[o/u] satisfies S(u),

- iff for some object o in D, d[o/u] satisifies S(u) & P(u),
- iff d satisfies $(\exists u)(S(u) \& P(u))$,
- Since d is arbitrary, $(\exists u)_{S}P(u)$ is true in I iff $(\exists u)(S(u) \& P(u))$ is true in I, QED.

Proof of Equivalence for Restricted Universals

- To save space, only the core of the proof is presented; the other steps are trivial.
- d satisfies $(\forall u)_{\mathbf{S}} P(u)$ iff for all objects $o \in r(\mathbf{S})$, d[o/u] satisfies P(u),
- iff for all objects $o \in D$, if $o \in r(S)$, then d[o/u] satisifies P(u),
- iff for all objects $o \in D$, if the one-tuple $\langle o \rangle \in v(S)$, then d[o/u] satisfies P(u),
- iff for all objects $o \in D$, if d[o/u] satisfies S(u), then d[o/u] satisfies P(u),
- iff for all objects $o \in D$, d[o/u] satisifes $S(u) \supset P(u)$,
- iff, d satisfies $(\forall x)(S(u) \supset P(u))$, QED.

Negated Restricted Quantifiers

• The following two logical equivalences hold, with a proof of the first below.

 $- \sim (\forall u)_{\mathbf{S}} \mathbf{P}(u) \text{ and } (\exists u)_{\mathbf{S}} \sim \mathbf{P}(u)$

- $\sim\!(\exists u)_{\mathbf{S}} P(u)$ and $(\forall u)_{\mathbf{S}} \sim\! P(u)$
- d satisfies $\sim (\forall u)_{\mathbf{S}} \mathbf{P}(u)$ iff d does not satisfy $(\forall u)_{\mathbf{S}} \mathbf{P}(u)$,
- iff it is not the case that for all $o \in D$, if $o \in r(S)$, then d[o/u] satisfies P(u),
- iff for some $o \in D$, it is not the case that if $o \in r(S)$, then d[o/u] satisfies P(u),
- iff for some $o \in D$, $o \in r(S)$ and d[o/u] does not satisfy P(u),
- iff for some $o \in D$, $o \in r(S)$, and d[o/u] satisfies $\sim P(u)$,
- iff **d** satisfies $(\exists \mathbf{u})_{\mathbf{S}} \sim \mathbf{P}(\mathbf{u})$, QED.