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Part I

Systems of Modal Logic

1. Introduction

Modal Logic deals with modal propositions and the entailment relations among them. Examples of

modal propositions are the following:

3 It is necessary that 2+ 2= 4.

3 It is necessarily possible that it will rain tomorrow.

3 If it is necessarily possible that ϕ then it is possible that ϕ.

Possibility and necessity are not the only modalities: other unary connectives are also classified as

modalities, for instance, “it ought to be the case that ϕ,” “It will be the case that ϕ,” “A knows that ϕ,”

or “A believes that ϕ.”

Modal logic makes its first appearance in Aristotle’s De Interpretatione: he was the first to notice

that necessity implies possibility, but not viceversa; that possibility and necessity are inter-definable;

that If ϕ∧ψ is possibly true then ϕ is possibly true and ψ is possibly true, but not conversely; and that

if ϕ→ψ is necessary, then if ϕ is necessary, so is ψ.

The first modern approach to modal logic was the work of C.I. Lewis, culminating with Lewis &

Langford, Symbolic Logic (1932). Lewis & Langford were unhappy with the representation of implica-

tion by means of the material conditional: ϕ→ψ is a poor substitute for “ϕ implies ψ.” Instead, they

proposed to characterize implication as “Necessarily: if ϕ then ψ,” symbolized as ϕ J ψ. In trying to

sort out the different properties, Lewis indetified five different modal systems, S1, . . . , S4, S5, the last

two of which are still in use.

The approach of Lewis & Langford was purely syntactical: they identified reasonable axioms and

rules and investigated wat was provable with those means. A semantic approach remained elusive

for a long time, until a first attempt was made by R. Carnap in Meaning and Necessity (1947) using

the notion of a state description, i.e., a collection of atomic sentences (those that are “true” in that state

description). After lifting the truth definition to arbitrary sentencesϕ, Carnap definesϕ to be necessarily

true if it is true in all state descriptions. Carnap’s approach could not handle iterated modalities, in that

sentences of the form “Possibly necessarily . . . possibly ϕ” always reduce to the innermost modality.

The major breakthrough in modal semantics came with S. Kripke’s article “A Completeness Theorem

in Modal Logic” (JSL 1959). Kripke based his work on Leibniz’s idea that a statement is necessarily true

if it is true “at all possible worlds.” This idea, though, suffers from the same drawbacks as Carnap’s,

in that the truth of statement at a world w (or a state description s) does not depend on w at all.

So Kripke assumed that worlds are related by an accessibility relation R, and that a statement of the

form “Necessarily ϕ” is true at a world w if and only if ϕ is true at all worlds w′ accessible from w.

Semantics that provide some version of this approach are called Kripke semantics and made possible
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the tumultuous development of modal logics (in the plural).

When interpreted by the Kripke semantics, modal logic shows us what relational structures look like

“from the inside.” A relational structure is just a set equipped with a binary relation (for instance, the

set of students in the class ordered by their social security number is a relational structure). But in fact

relational structures come in all sorts of domains: besides relative possibility of states of the world, we

can have epistemic states of some agent related by epistemic possibility, or states of a dynamical system

with their state transitions, etc. Modal logic can be used to model all of these: the first give us ordinary,

alethic, modal logic; the others give us epistemic logic, dynamic logic, etc.

In these notes we focus on one particular angle, known to modal logicians as “correspondence the-

ory.” One of the most significant early discoveries of Kripke’s is that many properties of the accessibility

relation R (whether it is transitive, symmetric, etc.) can be characterized in the modal language itself

by means of appropriate “modal schemas.” Modal logicians say, for instance, that the reflexivity of R

“corresponds” to the schema “If necessarily ϕ, then ϕ”. These notes explore mainly the correspondence

theory of a number of classical systems of modal logic (e.g., S4 and S5) obtained by a combination of

the schemas D, T, B, 4, and 5. The material in these notes is derived from various sources, first and

foremost Chellas’ still outstanding Modal Logic (1980). To the best of the author’s knowledge, nothing

in here is original, except the typesetting.

2. Syntactic Preliminaries

1. Definition: The language L of modal logic comprises the following:

3 Finitely or denumerably many propositional variables p, q, r, . . . possibly with subscripts.

3 A propositional constant, ⊥.

3 Truth functional connectives: ¬ and→.

3 A modal connective for necessity: �.

3 Parentheses: ( and ).

We also define L0 to be the non-modal fragment of L , i.e., the language obtained by dropping �.

2. Definition: A string of symbols from L is a formula if and only if it is a propositional variable or

constant, or if it is of the form (¬ϕ) or (ϕ→ψ) or (�ϕ), where ϕ and ψ are formulas. We denote the

set of formulas over L by FmlL .

3. Definition: We introduce conventions and abbreviations as usual:

3 We drop parentheses around (¬ϕ) and (�ϕ), with the understanding that ¬ and � apply to the

shortest formula to their right.

3 We drop outermost pairs of parentheses in formulas.

3 ϕ ∨ψ abbreviates ¬ϕ→ψ.

3 ϕ&ψ abbreviates ¬(ϕ→¬ψ).
3 ♦ϕ abbreviates ¬�¬ϕ.

4. Definition: Where ϕ is a modal formula in FmlL , all of whose propositional variables are among
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p1, . . . , pn, and θ1, . . . ,θn are in FmlL , we define ϕ[θ1/p1, . . . , θn/pn] as the result of simultaneously

substituting each θi for pi in ϕ. Formally, this is a definition by recursion on ϕ:

3 Ifϕ is atomic, sayϕ = q, thenϕ[θ1/p1, . . . , θn/pn] = θi if q is pi for some i ≤ n, andϕ[θ1/p1, . . . , θn/pn] =

q otherwise (including the case ϕ =⊥)).
3 If ϕ = ¬ψ, then ϕ[θ1/p1, . . . , θn/pn] = ¬(ψ[θ1/p1, . . . , θn/pn]).

3 If ϕ =ψ→ χ, then ϕ[θ1/p1, . . . , θn/pn] = (ψ[θ1/p1, . . . , θn/pn])→ (χ[θ1/p1, . . . , θn/pn]).

3 If ϕ =�ψ, then ϕ[θ1/p1, . . . , θn/pn] =�(ψ[θ1/p1, . . . , θn/pn]).

The formula ϕ[θ1/p1, . . . , θn/pn] is called a substitution instance of ϕ.

Below we will be interested in substitution instances of non-modal formulas, i.e., formulas in FmlL0
.

Definition 4 covers this case as well, of course: the recursion clase for �ψ is just never applied. Now

recall the following from propositional logic:

5. Definition: An assignment is a function v from the propositional variables into the set of two truth

values {0,1} (representing “false” and “true,” respectively). Each assignment can be lifted to a function

v : FmlL0
→ {0, 1}, by recursion as follows:

v(p) = v(p);

v(¬ψ) = 1− v(ψ);

v(ϕ→ψ) = 1− (v(ϕ)× (1− v(ψ))).

(Obviously, x = 1 if and only if 1− x 6= 1.)

6 . Definition: A modal-free formula ϕ ∈ FmlL0
is a tautology if and only if v(ϕ) = 1 for every

assignment v.

3. Kripke Semantics

7. Definition: A model for a language L is a triple M = (W, R, V ), where:

3 W is a non-empty set of “worlds.”

3 R is a binary accessibility relation on W .

3 V is a function assigning to each propositional variable p a set V (p) of possible worlds.

8. Definition: We define the notion ϕ is true at w in M , written M |=w ϕ, where ϕ is a formula, M a
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Figure 1: A simple model.

model and w a world in M , by recursion on ϕ:

M |=w p ⇔ w ∈ V (p);

M |=w ⊥ never;

M |=w ¬ϕ ⇔ M 6|=wϕ

M |=w ϕ→ψ ⇔ either M 6|=wϕ or M |=w ψ;

M |=w �ϕ ⇔ ∀w′
�

Rww′⇒ M |=w′ ϕ
�

.

The great advantage of Kripke semantics is that models can be represented by means of simple

diagrams, such as the one in Figure 1. Worlds are represented by nodes, and world w′ is accessible

from w precisely when there is an arrow from w to w′. Moreover, we write p next to a world precisely

when w ∈ V (p).

9. Exercise: Consider the model of Figure 1. Which of the following hold?

(a) M |=w1
q;

(b) M |=w3
¬q;

(c) M |=w1
p ∨ q;

(d) M |=w1
�(p ∨ q);

(e) M |=w3
�q;

(f) M |=w3
�⊥;

(g) M |=w1
♦q;

(h) M |=w1
�q;

(i) M |=w1
¬��¬q.

10. Definition: If Γ is a set of formulas and ϕ a formula, then Γ entails ϕ — in symbols: Γ |= ϕ —

if and only if for every model M = (W, R, V ) and world w ∈ W , if M |=w ψ for every ψ ∈ Γ, then

M |=w ϕ. If Γ contains a single formula ψ, then we write ψ |= ϕ.

11. Exercise: Show that �(p→ q) 6|= p→�q and p→�q 6|=�(p→ q).

12. Exercise: Let M = (W, R, V ). Show that M |=w ♦ϕ if and only if ∃w′
�

Rww′ and M |=w′ ϕ
�

.

13 . Definition: A formula ϕ is true in a model M = (W, R, V ) — written M |= ϕ — if and only if

M |=w ϕ for every w ∈W .
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14. Proposition: Facts about truth in a model:

(a) If M |= ϕ then M 6|= ¬ϕ, but not vice-versa.

(b) If M |= ϕ→ψ then M |= ϕ only if M |=ψ, but not vice-versa.

Proof. For (a): If M |= ϕ then ϕ is true at all worlds in W , and since W 6= ∅, it can’t be that M |= ¬ϕ,

or else ϕ would have to be both true and false at some world. Conversely, if M 6|= ¬ϕ then ϕ is true at

some world w ∈ W ; it does not follow that M |= ϕ. For instance, in the model of Figure 1, M 6|= ¬p,

but it does not follow that M |= p.

For (b): assume M |= ϕ→ ψ and M |= ϕ; to show M |= ψ let w ∈W be an arbitrary world. Then

M |=w ϕ → ψ and M |=w ψ, so M |=w ϕ, and since w was arbitrary, M |= ϕ. The converse fails: we

need to find a model M such that M |= ϕ only if M |= ψ, but M 6|= ϕ→ ψ. Consider again the model

of Figure 1: M 6|= p and hence (vacuously) M |= p only if M |= q. However, M 6|= p → q, as p is true

but q false at w1. �

15. Definition: A formula ϕ is valid in a class C of models if it is true in every model in C (i.e., true

at every world in every model in C ). If ϕ is valid in C we write C |= ϕ, and we write |= ϕ if ϕ is valid

in the class of all models.

16. Proposition: If ϕ is valid in C it is also valid in each class C ′ ⊆C .

17. Exercise: Show that the following are valid:

(a) |=�p→�(q→ p);

(b) |=�¬⊥;

(c) |=�p→ (�q→�p).

18. Definition: A modal formula ψ ∈ FmlL is a tautological instance if and only if there is a tautology

ϕ ∈ FmlL0
and formulas θ1, . . .θn ∈ FmlL such that ψ= ϕ[θ1/p1, . . . , θn/pn].

19. Theorem: Suppose ϕ ∈ FmlL0
be a modal-free formula all of whose propositional variables are

among p1, . . . , pn, and let θ1, . . .θn ∈ FmlL . Then for any assignment v, any model M = (W, R, V ), and

any w ∈W such that v(pi) = 1 if and only if M |=w θi: v(ϕ) = 1 if and only if M |=w ϕ[θ1/p1, . . . , θn/pn].

Proof. By induction on ϕ. If ϕ is atomic, then by the hypothesis it must be some pi , whence:

v(pi) = 1⇔ v(pi) = 1⇔ M |=w θi ⇔ M |=w ϕ[θ1/p1, . . . , θn/pn].

Assume the theorem holds for ψ and χ, in order to show that it holds for ¬ψ and ψ→ χ (we do not

consider the case for �ψ since ϕ is modal-free). For the first of these, we have:

v(¬ψ) = 1⇔ v(ψ) 6= 1 def. v;

⇔ M 6|=w ψ ind. hyp.;

⇔ M |=w ¬ψ.
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The case for ϕ→ψ is similar, using two inductive hypotheses:

v(ψ→ χ) = 1⇔ 1− (v(ψ)× (1− v(χ))) = 1, def. v;

⇔ v(ψ) 6= 1 or v(χ) = 1;

⇔ M 6|=w ψ or M |=w (χ), ind. hyp.× 2;

⇔ M |=w ψ→ χ, def. |= . �

20. Corollary: All tautological instances are valid.

Proof. Contrapositively, suppose ϕ is such that M 6|=w ϕ[θ1/p1, . . . , θn/pn], for some model M and world

w. Define an assignment v such that v(pi) = 1 if and only if M |=w θi (and v assigns arbitrary values

to q /∈ {p1, . . . , pn}). Then by the theorem v(ϕ) 6= 1, so ϕ is not a tautology. �

21. Proposition: If ϕ is valid, then so is �ϕ.

Proof. Assume |= ϕ. To show |=�ϕ let M = (W, R, V ) be a model and w ∈W . If Rww′ then M |=w′ ϕ,

since ϕ is valid, and so also M |=w �ϕ. Since M and w were arbitrary, |=�ϕ. �

22. Exercise: Let M = (W, R, V ) be a model, and suppose u, v ∈W are such that:

3 u ∈ V (p)⇔ v ∈ V (p); and

3 for all w ∈W : Ruw if and only if Rvw.

Using induction on formulas, show that for all formulas ϕ: M |=u ϕ if and only if M |=v ϕ.

4. Schemas

23. Definition: A schema is a set S of formulas comprising all and only the substitution instances of

some formula χ in FmlL :

S= {ψ : ∃θ1, . . . ,∃θn
�

ψ= χ[θ1/p1, . . . , θn/pn]
�

}.

The formula χ is called the characteristic formula of the schema, and it is unique up to a renaming of

the propositional variables. A formula ϕ is an instance of a schema if it is a member of the set S.

It is convenient to denote a schema by the meta-linguistic expression obtained by substituting

ϕ,ψ, . . . for the atomic components of χ. So, for instance, the following denote schemas: ϕ, ϕ→�ϕ,

ϕ→ (ψ→ ϕ), etc. Note that ϕ = FmlL .

24. Definition: A schema is true in a model if and only if all of its instances are; and a schema is valid

if and only if it is true in every model.

25. Theorem: The following schema K is valid: �(ϕ→ψ)→ (�ϕ→�ψ).

Proof. We need to show that all instances of the schema are true at every world in every model. So

let M = (W, R, V ) and w ∈ W be arbitrary. To show that a conditional is true at a world we assume
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Valid Schemas Invalid Schemas

�(ϕ→ψ)→ (♦ϕ→ ♦ψ) �(ϕ ∨ψ)→ (�ϕ ∨�ψ)
♦(ϕ→ψ)→ (�ϕ→ ♦ψ) (♦ϕ&♦ψ)→ ♦(ϕ&ψ)
�(ϕ&ψ)↔ (�ϕ&�ψ) ϕ→�ϕ
�ϕ→�(ψ→ ϕ) �♦ϕ→ψ
¬♦ϕ→�(ϕ→ψ) ��ϕ→�ϕ
♦(ϕ ∨ψ)↔ (♦ϕ ∨♦ψ) �♦ϕ→ ♦�ϕ.

Figure 2: Valid and (or?) invalid schemas.

the antecedent is true to show that consequent is true as well. In this case, let M |=w �(ϕ → ψ) and

M |=w �ϕ. We need to show M |= �ψ. So let w′ be arbitrary such that Rww′. Then by the first

assumption M |=w′ ϕ→ψ and by the second assumption M |=w′ ϕ. It follows that M |=w′ ψ. Since w′

was arbitrary, M |=w �ψ. �

26. Proposition: Show that if ϕ and ϕ→ψ are true at a world in a model then so is ψ. Hence, valid

formulas are closed under Modus Ponens.

27. Exercise: Show that none of the following schemas are valid:

D: �ϕ→ ♦ϕ;

T: �ϕ→ ϕ;

B: ϕ→�♦ϕ;

4: �ϕ→��ϕ;

5: ♦ϕ→�♦ϕ.

28. Exercise: Prove that the schemas in the first column of Figure 2 are valid and those in the second

column are not valid.

29. Exercise: Decide whether the following schemas valid or invalid:

(a) (♦ϕ→�ψ)→ (�ϕ→�ψ); (b) ♦(ϕ→ψ)∨�(ψ→ ϕ).

5. Frame correspondence

30. Definition: If C is a class of models, we write C |= ϕ, “ϕ is valid in C ,” to mean that ϕ is true in

every model M ∈ C .

31. Exercise: Show that ϕ → �ϕ is valid in the class C of models M = (W, R, V ) where W = {w}.
Similarly, show that ψ→�ϕ and ♦ϕ→ψ are valid in the class of models M = (W, R, V ) where R=∅.

32 . Definition: A frame is a pair F = (W, R) where W is a non-empty set of worlds and R a binary

relation on W . A model M is based on a frame F = (W, R) if and only if M = (W, R, V ).

33. Definition: If F is a class of frames, we write F |= ϕ, “ϕ is valid in F ,” to mean that ϕ is true in

every model M based on a frame F ∈ F . Similarly for C |= ϕ where C is a class of models.
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Figure 3: The argument from symmetry.

The reason frames are interesting is that correspondence between schemas and properties of the

accessibility relation R is at the level of frames, not of models.

34 . Remark: Obviously, if a formula or a schema is valid, i.e., valid with respect to the class of all

models, it is also valid with respect to any class C of models or class F of frames.

35. Definition: We single out the five following potential properties of an accessibility relation:

R is called . . . . . . if it satisfies:

“serial” ∀u∃v Ruv;

“reflexive” ∀w Rww;

“symmetric” ∀u∀v(Ruv⇒ Rvu);

“transitive” ∀u∀v∀w(Ruv & Rvw⇒ Ruw);

“euclidean” ∀w∀u∀v(Rwu & Rwv⇒ Ruv).

36. Theorem: Let M = (W, R, V ) be a model. Then:

3 If R is serial then schema D, i.e., �ϕ→ ♦ϕ, is true in M ;

3 If R is reflexive then schemaT, i.e., �ϕ→ ϕ, is true in M ;

3 If R is symmetric then schema B, i.e., ϕ→�♦ϕ, is true in M ;

3 If R is transitive then schema 4, i.e., �ϕ→��ϕ, is true in M ;

3 If R is euclidean then schema 5, i.e., ♦ϕ→�♦ϕ, is true in M .

Proof. Here is the case for B: to show that the schema is true in a model we need to show that all of its

instances are true all worlds in the model. So let ϕ→�♦ϕ be a given instance of B, and let w ∈W be

an arbitrary world. Suppose the antecedent ϕ is true at w, in order to show that �♦ϕ is true at w. So

we need to show that ♦ϕ is true at all w′ accessible from w. Now, for any w′ such that Rww′ we have,

using the hypothesis of symmetry, that also Rw′w (see Figure 3). Since M |=w ϕ, we have M |=w′ ♦ϕ.

Since w′ was an arbitrary world such that Rww′, we have M |=w �♦ϕ. �

Notice that the converse implications of Theorem 36 do not hold: it’s not true that if a model verifies

a schema, then the accessibility relation of that model has the corresponding property (a counterexam-

ple is provided by Exercise 37).
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If R is . . . . . . the following schema is true in M:

partially functional:
♦ϕ→�ϕ;∀w∀u∀v(Rwu & Rwv⇒ u= v)

functional: ∀u∃!vRuv ♦ϕ↔�ϕ;

weakly dense:
��ϕ→�ϕ;∀u∀v(Ruv⇒∃w(Ruw & Rwv))

weakly connected: L: �((ϕ&�ϕ)→ψ)∨�((ψ&�ψ)→ ϕ);∀w∀u∀v((Rwu & Rwv)⇒ (Ruv ∨ u= v ∨ Rvu))
weakly directed: G: ♦�ϕ→�♦ϕ;∀w∀u∀v((Rwu & Rwv)⇒∃t(Rut & Rvt)

Figure 4: Five more correspondence facts.

37. Exercise: Let M = (W, R, V ) be a model such that W = {u, v}, where worlds u and v are related by

R: i.e., both Ruv and Rvu. Suppose that for all p: u ∈ V (p)⇔ v ∈ V (p). Show that:

(a) For all ϕ: M |=u ϕ if and only if M |=v ϕ (use induction on ϕ).

(b) Schema T is true in M .

Conclude that, since M is not reflexive (it is, in fact, irreflexive), the converse of Theorem 36 fails in the

case of T (similar arguments can be given for some — though not all — the other schemas mentioned

in Theorem 36).

Even though the converse implications of Theorem 36 fail, they hold if we replace “model” by

“frame”: for the properties considered in Theorem 36, it is true that if a schema is valid in a frame then

the accessibility relation of that frame has the corresponding property. In fact, even more is true in the

case of D.

38. Exercise: Show that any model where schema D is true is serial (Hint: take ϕ = ¬⊥).

Although we will focus on the five classical schemas D, T, B, 4, and 5, we record in the following

exercise a few more correspondences.

39 . Exercise: Let M = (W, R, V ) be a model. Show that if R satisfies the left-hand properties of

Figure 4, the corresponding right-hand schemas are true in M .

We now proceed to establish the full correspondence results for frames. We wil consider T, B, 4
and 5, as the case for D already follows from Exercise 38.

40. Theorem: Recall that a schema S is valid in a frame if each of its instances is true in every model

based on that frame. Then:

(a) If T is valid in a frame F , then F is reflexive.

(b) If B is valid in a frame F , then F is symmetric.

(c) If 4 is valid in a frame F , then F is transitive.

(d) If 5 is valid in a frame F , then F is euclidean.
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Proof. The strategy is to devise, for each frame F , a valuation that will ensure that the frame has the

desired property (provided the corresponding schema is true).

For (a): suppose T is valid in F = (W, R), let w ∈W be an arbitrary world; we need to show Rww.

Fix a propositional variable p and let u ∈ V (p) if and only if Rwu (when q is other than p, V (q) is

arbitrary, say V (q) = ∅). Let M = (W, R, V ). By construction, for all u such that Rwu: M |=u p, and

hence M |=w �p. But by hypothesis �p → p, an instance of T, is true at w, so that M |=w p, but by

definition of V this is possible only if Rww.

For (b): suppose B is valid in F = (W, R), and let u, v ∈ W be arbitrary worlds such that Ruv;

we need to show that Rvu. Fix a propositional variable p, define V such that w ∈ V (p) if and only

if Rvw (and V is arbitrary otherwise). Let M = (W, R, V ). Notice that the following instance of B:

¬p→�♦¬p, is equivalent to ♦�p→ p. Now, by definition of V , M |=w p for all w such that Rvw, and

hence M |=v �p. Since Ruv, also M |=u ♦�p, and since B is valid in F , also M |=u ♦�p→ p. It follows

that M |=u p, whence Rvu, as required.

For (c): suppose 4 is valid in F = (W, R), and let u, v, w ∈W be arbitrary worlds such that Ruv and

Rvw; we need to show that Ruw. Fix a propositional variable p, define V such that z ∈ V (p) if and

only if Ruz (and V is arbitrary otherwise). Let M = (W, R, V ). By definition of V , M |=z p for all z such

that Ruz, and hence M |=u �p. But by hypothesis �p → ��p, an instance of 4, is true at u, so that

M |=u ��p. Since Ruv and Rvw, we have M |=w p, but by definition of V this is possible only if Ruw,

as desired.

For (d) we proceed contrapositively, assuming that the frame F = (W, R) is not euclidean, and

falsifying an instance of 5. Suppose there are worlds u, v, w such that Rwu and Rwv but not Ruv. Fix

a propositional variable p and define V such that for all worlds z, z ∈ V (p) if and only if it is not the

case that Ruz. Let M = (W, R, V ). Then by hypothesis M |=v p and since Rwv also M |=w ♦p. However,

there is no world y such that Ruy and M |=y p so M |=u ¬♦p. Since Rwu, it follows that M 6|=w �♦p,

so that the instance of 5, ♦p→�♦p fails at w. �

Theorem 40 also shows that the properties can be combined: for instance if both B and 4 are valid

in F then the frame is both symmetric and transitive, etc. This is useful because the classical systems

S4 and S5 are, in fact, just the systems characterized as KT4 and KTB4.

We now record some properties of accessibility relations (in fact, these notions apply to arbitrary

binary relations).

41. Proposition: Let R be a binary relation on a set W ; then:

(i) If R is reflexive, then it is serial.

(ii) If R is symmetric, then it is transitive if and only if it is euclidean.

(iii) If R is symmetric or euclidean then it is weakly directed (it has the “diamond property”).

(iv) If R is euclidean then it is weakly connected.

(v) If R is functional then it is serial.
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42. Definition: A binary relation R on W is an equivalence relation if and only if it is reflexive, sym-

metric and transitive. A relation R on W is universal if and only if Ruv for all u, v ∈W .

43. Exercise: Show that the following are equivalent:

(i) R is an equivalence relation;

(ii) R is reflexive and euclidean;

(iii) R is serial, symmetric, and transitive;

(iv) R is serial, symmetric, and euclidean.

Exercise 43 is the semantic counterpart to Exercise 58, in that it gives equivalent characterization

of the modal logic of frames over which R is an equivalence (the logic traditionally referred to as S5).

44. Proposition: Let R be an equivalence relation, and for each w ∈W define the equivalence class of

w as the set [w] = {w′ ∈W : Rww′}. Then:

3 w ∈ [w];
3 R is universal on each equivalence class [w];

3 The collection of equivalence classes partitions W into mutually exclusive and jointly exhaustive

subsets.

45. Proposition: A formula ϕ is valid in all frames F = (W, R) where R is an equivalence relation, if

and only if it valid in all frames F = (W, R) where R is universal. Hence, the logic of universal frames is

just S5.

Proof. It’s immediate to verify that a universal relation R on W is an equivalence. Hence, if ϕ is valid

in all frames where R is an equivalence it is valid in all universal frames. For the other direction, we

argue contrapositively: suppose ψ is a formula that fails at a world w in a model M = (W, R, V ) based

on a frame (W, R), where R is an equivalence on W . So M 6|=w ψ. Define a model M ′ = (W ′, R′, V ′) as

follows:

3 W ′ = [w];

3 R′ is universal on W ′;

3 V ′(p) = V (p)∩W ′.

(So the set W ′ of worlds in M ′ is represented by the shaded area in Figure 5.) It is easy to see that R

and R′ agree on W ′. Then one can show by induction on formulas that for all w′ ∈ W ′: M ′ |=w′ ϕ if

and only if M |=w′ ϕ for each ϕ (this makes sense since W ′ ⊆W ). In particular, M ′ 6|=w ψ, and ψ fails

in a model based on a universal frame. �
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[w]

[u]
[v]

[z]

Figure 5: A partition of W in equivalence classes.

Part II

Meta-Theory of Modal Logic

6. Modal systems

46. Definition: A modal logic is a set Σ of modal sentences which is closed under tautological impli-

cation in the following sense: if ϕ1, . . . ,ϕn ∈ Σ and ϕ1 → (ϕ2 → · · · (ϕn → ϕ) · · · ) is a tautological

instance, then ϕ ∈ Σ.

47. Proposition: Every modal logic is closed under the rule of Modus Ponens:

MP.
ϕ→ψ ϕ

ψ

Proof. (ϕ→ψ)→ (ϕ→ψ) is tautological instance, hence if ϕ→ψ and ϕ are in Σ, so is ψ. �

48. Definition: A modal logic Σ is normal if it is closed under the rule RK:

RK.
ϕ1→ (ϕ2→ ·· · (ϕn−1→ ϕn) · · · )

�ϕ1→ (�ϕ2→ ·· · (�ϕn−1→�ϕn) · · · )

Observe that while tautological implication is “fine-grained” enough to preserve truth at a world,

the rule RK only preserves truth in a model (and hence also validity in a frame or in a class of frames).

49. Proposition: Every normal modal logic Σ is closed under the rule of Necessitation:

RN.
ϕ

�ϕ

Proof. RN is just the special case of RK when n= 1. �

50. Proposition: Every normal modal logic Σ contains every instance of K.
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Proof. In fact, K follows from rule RK: (ϕ → ψ)→ (ϕ → ψ) is in Σ since it is a tautological instance;

one application of RK gives that �(ϕ→ψ)→ (�ϕ→�ψ) is in Σ as well. �

51. Exercise: Show that every normal modal logic Σ contains ¬♦⊥.

52 . Proposition: Let S1, . . . ,Sn be schemas. Then there is a smallest modal logic Σ containing all

instances of S1, . . . ,Sn. Such a modal logic is called a modal system and denoted by KS1 . . .Sn. The

smallest normal modal logic is denoted by K.

Proof. Given S1, . . . ,Sn, define Σ as the intersection of all normal modal logics containing all instances

of S1, . . . ,Sn. The intersection is non-empty as FmlL , the set of all formulas, is such a modal logic. �

53 . Definition: Given a modal system KS1 . . .Sn and a formula ϕ we say that ϕ is provable in

KS1 . . .Sn, written KS1 . . .Sn ` ϕ if and only if there are formulas ϕ1, . . . ,ϕn such that ϕn = ϕ and

each ϕi is either a tautological instance, or an instance of the schemas K,S1, . . . ,Sn, or it follows from

previous formulas by means of the rules MP or RN.

The following proposition allows us to show that ϕ ∈ Σ by exhibiting a Σ-proof of ϕ.

54. Proposition: KS1 . . .Sn = {ϕ : KS1 . . .Sn ` ϕ}.

Proof. We use induction on the length of proofs to show that {ϕ : KS1 . . .Sn ` ϕ} ⊆ KS1 . . .Sn. The

converse inclusion follows by showing that {ϕ : KS1 . . .Sn ` ϕ} is a normal modal logic containing

all the instances of the schemas S1, . . . ,Sn, and the observation that KS1 . . .Sn is, by definition, the

smallest such logic. �

In order to practice proofs in the smallest modal system, we show the valid formulas on the left-

hand side of the table of Exercise 28 can all be given K-proofs. Justifications for steps that are either

tautological instances or follow by tautological implication from previous one are just marked “PL” (for

“Propositional Logic”).

K `�(ϕ→ψ)→ (♦ϕ→ ♦ψ):

1. (ϕ→ψ)→ (¬ψ→¬ϕ) PL

2. �[(ϕ→ψ)→ (¬ψ→¬ϕ) RN

3. �(ϕ→ψ)→�(¬ψ→¬ϕ) K, MP

4. �(¬ψ→¬ϕ)→ (�¬ψ→�¬ϕ) K
5. �(ϕ→ψ)→ (�¬ψ→�¬ϕ) PL, 3,4

6. (�¬ψ→�¬ϕ)→ (¬�¬ϕ→¬�¬ψ) PL

7. �(ϕ→ψ)→ (¬�¬ϕ→¬�¬ψ) PL, 5, 6

8. �(ϕ→ψ)→ (♦ϕ→ ♦ψ) re-writing.
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K `�ϕ→ (♦(ϕ→ψ)→ ♦ψ):

1. ϕ→ (¬ψ→¬(ϕ→ψ)) PL

2. �[ϕ→ (¬ψ→¬(ϕ→ψ))] RN

3. �ϕ→�(¬ψ→¬(ϕ→ψ)) K
4. �ϕ→ (�¬ψ→�¬(ϕ→ψ)) K
5. �ϕ→ (¬�¬(ϕ→ψ)→¬�¬ψ) PL

6. �ϕ→ (♦(ϕ→ψ)→ ♦ψ) re-writing.

K `�(ϕ&ψ)→ (�ϕ&�ψ):

1. ¬(ϕ→¬ψ)→ ϕ PL

2. �¬(ϕ→¬ψ)→�ϕ RN, K
3. �(ϕ&ψ)→�ϕ re-writing

4. �(ϕ&ψ)→�ψ similarly

5. �(ϕ&ψ)→ (�ϕ&�ψ) PL, 3,4.

K ` (�ϕ&�ψ)→�(ϕ&ψ):

1. ϕ→ (ψ→¬(ϕ→¬ψ)) PL

2. �ϕ→ (�ψ→�¬(ϕ→¬ψ)) RN, K
3. (�ϕ&�ψ)→�(ϕ&ψ) PL, re-writing.

K `�ϕ→�(ψ→ ϕ):
1. ϕ→ (ψ→ ϕ) PL

2. �ϕ→�(ψ→ ϕ) RN, K.

K ` ¬♦ϕ→�(ϕ→ψ):
1. ¬ϕ→ (ϕ→ψ) PL

2. �¬ϕ→�(ϕ→ψ) RN, K
3. ¬¬�¬ϕ→�(ϕ→ψ) PL

4. ¬♦ϕ→�(ϕ→ψ) re-writing.

K ` (♦ϕ ∨♦ψ)→ ♦(ϕ ∨ψ):
1. ¬(¬ϕ→ψ)→¬ϕ PL

2. ¬(ϕ ∨ψ)→¬ϕ re-writing

3. �¬(ϕ ∨ψ)→�¬ϕ RN, K
4. ¬�¬ϕ→¬�¬(ϕ ∨ψ) PL

5. ♦ϕ→ ♦(ϕ ∨ψ) re-writing

6. ♦ψ→ ♦(ϕ ∨ψ) similarly

7. (♦ϕ ∨♦ψ)→ ♦(ϕ ∨ψ) PL, 5,6.
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K ` ♦(ϕ ∨ψ)→ (♦ϕ ∨♦ψ):
1. ¬ϕ→ (¬ψ→¬(ϕ ∨ψ) PL, re-writing

2. �¬ϕ→ (�¬ψ→�¬(ϕ ∨ψ) RN, K
3. �¬ϕ→ (¬�¬(ϕ ∨ψ)→¬�¬ψ)) PL

4. ¬�¬(ϕ ∨ψ)→ (�¬ϕ→¬�¬ψ) PL

5. ¬�¬(ϕ ∨ψ)→ (¬¬�¬ψ→¬�¬ϕ) PL

6. ♦(ϕ ∨ψ)→ (¬♦ψ→ ♦ϕ) re-writing

7. ♦(ϕ ∨ψ)→ (♦ψ∨♦ϕ) re-writing.

55. Definition: Each of the schemas T, B, 4, and 5 has a dual, denoted by a subscripted diamond, as

follows:
T♦ : ϕ→ ♦ϕ

B♦ : ♦�ϕ→ ϕ
4♦ : ♦♦ϕ→ ♦ϕ

5♦ : ♦�ϕ→�ϕ

Each of the dual above schemas is obtained from the corresponding schema by replacing ¬ϕ for ϕ,

contraposing, and re-writing. Schema D is its own dual (modulo the replacement of ¬♦¬ by �).

56. Exercise: Show that for each schema S in Definition 55: K ` S↔ S♦.

We now come to proofs in systems of modal logic other than K.

57. Proposition: The following provability results obtain:

(a) KT5 ` B;

(b) KT5 ` 4;

(c) KDB4 ` T;

(d) KB4 ` 5;

(e) KB5 ` 4;

(f) KT `D.

Proof. We exhibit proofs for each.

KT5 ` B:

1. ♦ϕ→�♦ϕ 5
2. ϕ→ ♦ϕ T♦
3. ϕ→�♦ϕ PL.

KT5 ` 4:

1. ♦�ϕ→�♦�ϕ 5 with �ϕ for ϕ

2. �ϕ→ ♦�ϕ T♦ with �ϕ for ϕ

3. �ϕ→�♦�ϕ PL, 1,2

4. ♦�ϕ→�ϕ 5♦
5. �♦�ϕ→��ϕ RK, 4

6. �ϕ→��ϕ PL, 3, 5.
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KDB4 ` T:

1. ♦�ϕ→ ϕ B♦

2. ��ϕ→ ♦�ϕ D with �ϕ for ϕ

3. ��ϕ→ ϕ PL 1, 2

4. �ϕ→��ϕ 4
5. �ϕ→ ϕ PL, 1,4.

KB4 ` 5:

1. ♦ϕ→�♦♦ϕ B with ♦ϕ for ϕ

2. ♦♦ϕ→ ♦ϕ 4♦
3. �♦♦ϕ→�♦ϕ RK, 2

4. ♦ϕ→�♦ϕ PL, 1,3.

KB5 ` 4:

1. �ϕ→�♦�ϕ B with �ϕ for ϕ

2. ♦�ϕ→�ϕ 5♦
3. �♦�ϕ→��ϕ RK, 2

4. �ϕ→��ϕ PL, 1,3.

KT `D:

1. �ϕ→ ϕ T
2. ϕ→ ♦ϕ T♦

3. �ϕ→ ♦ϕ PL, 1, 2
�

58. Exercise: Show that KTB4= KT5= KDB4= KDB5.

59. Definition: Following tradition, we define S4 to be the system KT4, and S5 the system KTB4.

Exercise 58 shows that the classical system S5 has several equivalent axiomatizations (see Exer-

cise 43).

7. Soundness and its consequences

In the previous section we saw how to prove that two systems of modal logic are in fact the same

system. Theorem 60 gives us a tool to show that two such systems are distinct.

60. Soundness Theorem: If schemas S1, . . . ,Sn are valid in the classes of models Cn, . . . ,Cn, respec-

tively, then KS1 . . .Sn ` ϕ implies that ϕ is valid in the class of models Cn ∩ . . .∩Cn.

Proof. By induction on length of proofs. For brevity, put C =Cn ∩ . . .∩Cn.
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Basis: If ϕ has a proof of length 1, then it is either a tautological instance or an instance of K, or an

instance of one of the schemas. In the first case, ϕ is valid in C , since tautological instance are

valid in any class of models, by Corollary 20. Similarly in the second case, by Theorem 25. Finally

in the third case, since ϕ is valid in Ci and C ⊆Ci , we have that ϕ is valid in C as well.

Inductive step: Suppose ϕ has a proof of length k > 1. If ϕ is a tautological instance or an instance

of one of the schemas, we proceed as in the previous step. So suppose ϕ is obtained by MP from

previous formulasψ→ ϕ andψ. Then ϕ→ψ andψ have proofs of length < k, and by inductive

hypothesis they are valid in C . By Proposition 26, ϕ is valid in C as well. Finally suppose ϕ

is obtained by RN from ψ (so that ϕ = �ψ). By inductive hypothesis, ψ is valid in C , and by

Proposition 21 so is ϕ. �

The Soundness theorem is useful because it allows us to show that two modal systems Σ and Σ′ are

distinct, by finding a formula ϕ such that Σ′ ` ϕ that fails in a model of Σ.

61. Proposition: KD( KT

Proof. This is the syntactic counterpart to the semantic fact that all reflexive relations are serial. To

show KD ⊆ KT we need to see that KD ` ϕ implies KT ` ϕ, which follows from KT ` D, as shown in

Proposition 57, part ( f ). To show that the inclusion is proper, by Soundness (Theorem 60), it suffices

to exhibit a model of KD where some instance �ϕ→ ϕ of T fails (an easy task left to the reader), for

then by Soundness KD 6`�ϕ→ ϕ. �

62. Proposition: KB 6= K4.

Proof. We construct a symmetric model where some instance of 4 fails; since obviously the instance is

provable for K4 but not in KB, it will follow K4 6⊆ KB. Consider the symmetric model M of Figure 6

Since the model is symmetric, K and B are true in M (by Theorems 25 and 36, respectively). However,

M 6|=w �p→��p. �

•w
¬p

• w′

p,¬�p

R M

Figure 6: A symmetric model falsifying an instance of 4.

63. Theorem: KTB 6` 4 and KTB 6` 5.

Proof. By Theorem 36 we know that all instances of T and B are true in each reflexive symmetric model

(respectively). So by Soundness it suffices to find a reflexive symmetric model containing a world at

which some instance of 4 fails, and similarly for 5. We use the same model for both claims. Consider
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the symmetric, reflexive model in Figure 7. Then M 6|=w1
�p→ ��p, so the instance of 4 with ϕ = p

fails at w1. Similarly, M 6|=w2
♦¬p→�♦¬p, so the instance of 5 with ϕ = ¬p fails at w2. �

•w1

p
•w2

p
• w3

¬p
�p ♦¬p

¬�♦¬p¬��p
¬♦¬p M

Figure 7: The model for Theorem 63.

64. Theorem: KD5 6= KT4= S4.

Proof. By Theorem 36 we know that all instances of D and 5 to be true in all serial euclidean models.

So it suffices to find a serial euclidean model containing a world at which some instance of 4 fails.

Consider the model of Figure 8, and notice that M 6|=w1
�p→��p. �

65. Exercise: Give an alternative proof of Theorem 64 using a model with 3 worlds.

66. Exercise: Provide a single reflexive transitive model showing that both KT4 6` B and KT4 6` 5.

8. Maximally consistent sets

In Section 6 we defined a notion of provability of a formula in a system Σ. We now extend this notion

to provability in Σ from formulas in a set Γ.

67. Definition: A formula ϕ is provable in a system Σ from a set of formulas Γ, written Γ `Σ ϕ if and

only if there are ψ1, . . . ,ψn ∈ Γ such that Σ `ψ1→ (ψ2→ ·· · (ψn→ ϕ) · · · ).

68. Proposition: Let Σ be a modal system and Γ a set of modal formulas. The following properties

hold:

(a) Monotony: If Γ `Σ ϕ and Γ⊆∆ then ∆ `Σ ϕ;

(b) Reflexivity: If ϕ ∈ Γ then Γ `Σ ϕ;

(c) Cut: If Γ `Σ ϕ and ∆∪ {ϕ} `Σ ψ then Γ∪∆ `Σ ψ;

(d) Deduction theorem: Γ∪ {ψ} `Σ ϕ if and only if Γ `Σ ψ→ ϕ;

(e) Rule T: If Γ `Σ ϕ1 and . . . and Γ `Σ ϕn and ϕ1 → (ϕ2 → ·· · (ϕn → ψ) · · · ) is a tautological

instance, then Γ `Σ ψ.

The proof is an easy exercise. Part (e) of Proposition 68 gives us that, for instance, if Γ `Σ ϕ ∨ψ
and Γ `Σ ¬ϕ, then Γ `Σ ψ. Also, in what follows, we write Γ,ϕ `Σ ψ instead of Γ∪ {ϕ} `Σ ψ.

69. Definition: A set Γ is deductively closed relatively to a system Σ if and only if Γ `Σ ϕ implies ϕ ∈ Γ.
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•
w2

p

• w1

�p,¬��p

• w4¬p

•
w3

p

M

Figure 8: The model for Theorem 64.

70. Definition: A set Γ is consistent relatively to a system Σ or, as we wil say, Σ-consistent, if and only

if Γ 6`Σ ⊥.

So for instance, the set {�(p→ q),�p,¬�q} is consistent relatively to propositional logic, but not

K-consistent. Similarly, the set {♦p,�♦p→ q,¬q} is not K5-consistent.

71. Proposition: Let Γ be a set of formulas. Then:

(a) A set Γ is Σ-consistent if and only if there is some formula ϕ such that Γ 6`Σ ϕ.

(b) Γ `Σ ϕ if and only if Γ∪ {¬ϕ} is not Σ-consistent.

(c) If Γ is Σ-consistent, then for any formula ϕ, either Γ ∪ {ϕ} is Σ-consistent or Γ ∪ {¬ϕ} is Σ-

consistent.

Proof. These fact follow easily using classical propositional logic. We give the argument for (c). Proceed

contrapositively and suppose neither Γ∪{ϕ} nor Γ∪{¬ϕ} is Σ-consistent. Then by (b) both Γ,ϕ `Σ ⊥
and Γ,¬ϕ `Σ ⊥. By the deduction theorem Γ `Σ ϕ →⊥ and Γ `Σ ¬ϕ →⊥. But (ϕ →⊥)→ ((¬ϕ →
⊥)→⊥) is a tautological instance, hence by Proposition 68, part (e), Γ `Σ ⊥. �

72. Definition: A set Γ is maximally Σ-consistent if and only if it is Σ-consistent and for every ϕ, either

ϕ ∈ Γ or ¬ϕ ∈ Γ.

73. Proposition: Suppose Γ is maximally consistent in Σ. Then:

(a) Γ is deductively closed in Σ.

(b) Σ⊆ Γ.

(c) ¬ϕ ∈ Γ if and only if ϕ /∈ Γ.

(d) ϕ→ψ ∈ Γ if and only if ϕ ∈ Γ implies ψ ∈ Γ.

Proof. For part (a): if Γ `Σ ϕ but ϕ /∈ Γ then by maximality ¬ϕ ∈ Γ, and Γ is inconsistent. For part

(b): if ϕ ∈ Σ then Γ `Σ ϕ, and ϕ ∈ Γ by deductive closure. For part (c): if ¬ϕ ∈ Γ, then by consistency
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ϕ /∈ Γ; and if ϕ /∈ Γ then by maximality ϕ ∈ Γ. Finally, for part (d): suppose ϕ → ψ ∈ Γ and ϕ ∈ Γ;

then Γ `Σ ψ, whence ψ ∈ Γ by deductive closure. Conversely, if ϕ → ψ /∈ Γ then by maximality

¬(ϕ→ψ) ∈ Γ, so by Rule T, deductive closure, and consistency both ϕ ∈ Γ and ψ /∈ Γ. �

74. Theorem: (Lindenbaum’s Lemma) If Γ is Σ-consistent then there is a maximally Σ-consistent set ∆

extending Γ.

Proof. Let ϕ0,ϕ1, . . . be an exhaustive listing of all formulas of the language (repetitions are allowed).

For instance, start by listing p0, and at each stage n list the finitely many formulas of length n using

only variables among p0, . . . , pn. We define sets of formulas ∆n by recursion on n, and we then set

∆= limn∆n. We first put ∆0 = Γ, then supposing that ∆n has been defined:

∆n+1 =

(

∆n ∪ {ϕn}, if ∆n ∪ {ϕn} is consistent;

∆n ∪ {¬ϕn}, otherwise.

If we now let ∆=
⋃

n∆n, we can show the following:

(a) For each n, ∆n ⊆∆ (immediate from the definition).

(b) Γ⊆∆ (from (a)).

(c) If n≤ m then ∆n ⊆∆m (by induction on m− n).

(d) ∆ is maximal (by construction).

(e) For each m, ∆m is consistent (by induction on m, using Proposition 71, part (c))

(f) If ∆′ ⊆∆ is finite, then there is m such that ∆′ ⊆∆m.

(g) ∆ is consistent.

It follows that ∆ is a maximally Σ-consistent set extending Γ. �

75 . Corollary: Γ `Σ ϕ if and only if ϕ ∈ ∆ for each maximally Σ-consistent set ∆ extending Γ

(including when Γ =∅, in which case we get another characterization of the modal system Σ.)

Proof. Suppose Γ `Σ ϕ, and let ∆ be any maximally Σ-consistent set extending Γ. If ϕ /∈ ∆ then

by maximality ¬ϕ ∈ ∆ and so ∆ `Σ ϕ (by monotony) and ∆ `Σ ¬ϕ (by reflexivity), and so ∆ is

inconsistent. Conversely if Γ 6`Σ ϕ, then Γ∪ {¬ϕ} is Σ-consistent, and by Lindenbaum’s Lemma there

is a maximally consistent set ∆ extending Γ∪ {¬ϕ}; by consistency, ϕ /∈∆. �

When, in the next section, we construct a model whose set of worlds is given by the maximally

consistent sets in some normal modal logic Σ, we will also need to define an accessibility relation

between such “worlds.” The next few lemmas give us the tools to do so. As noted, Σ will be a normal

modal logic throughout.

76. Lemma: If Γ `Σ ϕ then {�ψ :ψ ∈ Γ} `�ϕ.
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Proof. If Γ `Σ ϕ then there are ψ1, . . . ,ψk ∈ Γ such that Σ ` ψ1 → (ψ2 → · · · (ψn → ϕ) · · · ). Since

Σ is normal, by rule RK, Σ ` �ψ1→ (�ψ2→ ·· · (�ψn→ �ϕ) · · · ), where obviously �ψ1, . . . ,�ψk ∈
{�ψ :ψ ∈ Γ}. Hence, by definition, {�ψ :ψ ∈ Γ} `�ϕ. �

77. Lemma: If {ψ : �ψ ∈ Γ} `Σ ϕ then Γ `Σ �ϕ.

Proof. Let ∆= {ψ : �ψ ∈ Γ}, so that ∆ `Σ ϕ; then by Lemma 76, {�ψ :ψ ∈∆} ` �ϕ. But obviously

{�ψ :ψ ∈∆} ⊆ Γ, so also Γ `Σ �ϕ by Monotony. �

78 . Theorem: If Γ is maximally Σ-consistent, then �ϕ ∈ Γ if and only if for every maximally Σ-

consistent ∆ such that {ψ : �ψ ∈ Γ} ⊆∆, it holds that ϕ ∈∆.

Proof. The left-to-right half of the theorem is obvious. For the converse, suppose �ϕ /∈ Γ. Since Γ

is deductively closed, Γ 6`Σ �ϕ, and by Lemma 77 {ψ : �ψ ∈ Γ} 6`Σ ϕ. By Proposition 71, part (b),

{ψ : �ψ ∈ Γ}∪{¬ϕ} is Σ-consistent, so that by Lindenbaum’s Lemma there is a maximally Σ-consistent

set ∆ such that {ψ : �ψ ∈ Γ} ∪ {¬ϕ} ⊆∆. By consistency, ϕ /∈∆, and the theorem is proved. �

79. Lemma: Suppose Γ and ∆ are maximally Σ-consistent. Then: {ϕ : �ϕ ∈ Γ} ⊆ ∆ if and only if

{♦ϕ : ϕ ∈∆} ⊆ Γ.

Proof. “Only if” direction: Assume {ϕ : �ϕ ∈ Γ} ⊆ ∆ and suppose ϕ ∈ ∆. In order to show ♦ϕ ∈ Γ
suffices to show �¬ϕ /∈ Γ for then by maximality ¬�¬ϕ ∈ Γ. Now, if �¬ϕ ∈ Γ then by hypothesis

¬ϕ ∈∆, against the consistency of ∆ (since ϕ ∈∆). Hence �¬ϕ /∈ Γ, as required.

“If” direction: Assume {♦ϕ : ϕ ∈ ∆} ⊆ Γ. We argue contrapositively: suppose ϕ /∈ ∆ in order to

show �ϕ /∈ Γ. If ϕ /∈ ∆ then by maximality ¬ϕ ∈ ∆ and so by hypothesis ♦¬ϕ ∈ Γ. But in a normal

modal logic ♦¬ϕ is equivalent to ¬�ϕ, and if the latter is in Γ by consistency �ϕ /∈ Γ, as required. �

80 . Corollary: If Γ is maximally Σ-consistent, then ♦ϕ ∈ Γ if and only if for some maximally Σ-

consistent ∆ such that {♦ψ :ψ ∈∆} ⊆ Γ, it holds that ϕ ∈∆.

Proof. Suppose Γ is maximally Σ-consistent, and argue as follows:

♦ϕ ∈ Γ ⇔ ¬�¬ϕ ∈ Γ, re-writing;

⇔ �¬ϕ /∈ Γ, Γ is max. Σ-cons.;

⇔ ∃∆
�

∆ is max. Σ-cons. & {ψ : �ψ ∈ Γ} ⊆∆& ¬ϕ /∈∆
�

, Theorem 78;

⇔ ∃∆
�

∆ is max. Σ-cons. & {♦ψ :ψ ∈∆} ⊆ Γ& ¬ϕ /∈∆
�

, Lemma 79;

⇔ ∃∆
�

∆ is max. Σ-cons. & {♦ψ :ψ ∈∆} ⊆ Γ& ϕ ∈∆
�

, ∆ is maximal. �
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9. Completeness via canonical models

81. Definition: A model M is said to determine a normal modal logic Σ precisely when M |= ϕ if and

only if Σ ` ϕ, for all formulas ϕ.

82 . Definition: Let Σ be a normal modal logic. The canonical model for Σ is MΣ = (WΣ, RΣ, VΣ),

where:

3 MΣ = {w ⊆ FmlL : w is maximally Σ-consistent}.
3 RΣww′ holds if and only if {ϕ : �ϕ ∈ w} ⊆ w′.

3 VΣ(p) = {w : p ∈ w}.

83. Proposition: (Truth Lemma) For every formula ϕ, MΣ |=w ϕ if and only if ϕ ∈ w.

Proof. By induction on ϕ. Basis: if ϕ is a propositional variable, say p, then:

MΣ |=w p⇔ w ∈ VΣ(p)⇔ p ∈ w.

If ϕ is ⊥ then both MΣ 6|=w ⊥ and ⊥ /∈ w (by consistency of w). The cases for ¬ϕ and ϕ → ψ follow

from the inductive hypothesis and Proposition 73, parts (c) and (d). Here is the case for �ϕ; in one

direction:

MΣ |=w �ϕ ⇒ ∀w′ ∈WΣ(RΣww′⇒ MΣ |=w′ ϕ), def. |=;

⇒ ∀w′ ∈WΣ({ψ : �ψ ∈ w} ⊆ w′⇒ MΣ |=w′ ϕ), def. RΣ;

⇒ ∀w′ ∈WΣ({ψ : �ψ ∈ w} ⊆ w′⇒ ϕ ∈ w′), ind. hyp.;

⇒ �ϕ ∈ w, Theorem 78.

Conversely, assume �ϕ ∈ w, and let w′ be an arbitrary world in WΣ such that RΣww′. By definition of

RΣ, we have {ψ : �ψ ∈ w} ⊆ w′, which immediately gives ϕ ∈ w′. By induction hypothesis, MΣ |=w′ ϕ,

and since w′ was arbitrary, MΣ |=w �ϕ. �

84. Theorem: (Determination) For every normal modal logic Σ: MΣ |= ϕ if and only if Σ ` ϕ.

Proof. If MΣ |= ϕ, then for every maximally Σ-consistent w, we have MΣ |=w ϕ. Hence, by the Truth

Lemma, ϕ ∈ w for every maximally Σ-consistent w, whence by Theorem 75 (with Γ = ∅), Σ ` ϕ.

Conversely, if Σ ` ϕ then by Proposition 73, part (b), every maximally Σ-consistent w contains ϕ, and

hence by the Truth Lemma MΣ |=w ϕ for every w, i.e., MΣ |= ϕ. �

85. Corollary: The basic modal logic K is complete with respect to the class of all models, i.e., if |= ϕ
then K ` ϕ.

Proof. Contrapositively, if K 6` ϕ then by Determination MK 6|= ϕ and hence ϕ is not valid. �
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Similar results can be extended to other modal system, once we show that the canonical model for

a given logic has the corresponding frame property.

86. Theorem: If a normal modal logic Σ contains one of the schemas on the left-hand side of the table

of Figure 9, then the canonical model for Σ has the corresponding property on the right-hand side.

If Σ contains . . . . . . the canonical model for Σ is:

D: �ϕ→ ♦ϕ serial;
T: �ϕ→ ϕ reflexive;
B: ϕ→�♦ϕ symmetric;
4: �ϕ→��ϕ transitive;
5: ♦ϕ→�♦ϕ euclidean.

Figure 9: Basic correspondence facts.

Proof. We take each of these up in turn. Suppose Σ contains D, and let w ∈ WΣ; we need to show

that there is a w′ such that RΣww′. It suffices to show that {ψ : �ψ ∈ w} is Σ-consistent, for then

by Lindenbaum’s Lemma, there is a maximally Σ-consistent set w′ ⊇ {ψ : �ψ ∈ w}, and by definition

of RΣ we have RΣww′. So, suppose for contradiction that {ψ : �ψ ∈ w} is not Σ-consistent, i.e.,

{ψ : �ψ ∈ w} `Σ ⊥. By Lemma 77, w `Σ �⊥, and since Σ contains D, also w `Σ ♦⊥. But Σ is normal,

so Σ ` ¬♦⊥ (Exercise 51), whence also w `Σ ¬♦⊥, against the consistency of w.

Now suppose Σ contains T, and let w ∈WΣ. We want to show RΣww, i.e., {ϕ : �ϕ ∈ w} ⊆ w. But

if �ϕ ∈ w then by T also ϕ ∈ w, as desired.

Now suppose Σ contains B, and suppose RΣuv for u, v ∈ WΣ. We need to show that RΣvu, i.e.,

{ϕ : �ϕ ∈ v} ⊆ u. By Lemma 79, this is equivalent to {♦ϕ : ϕ ∈ u} ⊆ v. So suppose ϕ ∈ u. By B,

also �♦ϕ ∈ u. By the hypothesis that RΣuv, we have that {ψ : �ψ ∈ u} ⊆ v, and hence ♦ϕ ∈ v, as

required.

Now suppose Σ contains 4, and suppose RΣuv and RΣvw. We need to show RΣuw. From the

hypothesis we have both {ψ : �ψ ∈ u} ⊆ v and {ψ : �ψ ∈ v} ⊆ w. In order to show RΣuw it suffices

to show {ψ : �ψ ∈ u} ⊆ w. So let �ψ ∈ u; by 4, also ��ψ ∈ u and by hypothesis we get, first, that

�ψ ∈ v and, second, that ψ ∈ w, as desired.

Now suppose Σ contains 5, suppose RΣuv and RΣuw. We need to show RΣvw. The first hypothesis

give {ϕ : �ϕ ∈ u} ⊆ v, and the second hypothesis is equivalent to {♦ϕ : ϕ ∈ w} ⊆ u, by Lemma 79. To

show RΣvw, by Lemma 79, it suffices to show {♦ϕ : ϕ ∈ w} ⊆ v. So let ϕ ∈ w; by the second hypothesis

♦ϕ ∈ u and by 5, �♦ϕ ∈ u as well. But now the first hypothesis give ♦ϕ ∈ v, as desired. �

As a corollary we obtain completeness results for a number of systems. For instance, we know that

S5 = KT5 = KTB4 is complete with respect to the class of all reflexive euclidean models, which is the

same as the class of all reflexive, symmetric and transitive models.
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87. Theorem: Let CD, CT, CB, C4, and C5 be the class of all serial, reflexive, symmetric, transitive,

and euclidean models (respectively). Then for any schemas S1, . . . ,Sn among D, T, B, 4, and 5, the

system KS1, . . . ,Sn is determined by the class of models C =CS1
∩ . . .∩CSn

.

88. Proposition: Let Σ be a normal modal logic; then:

(a) If Σ contains the schema ♦ϕ→�ϕ then the canonical model for Σ is partially functional.

(b) If Σ contains the schema ♦ϕ↔�ϕ then the canonical model for Σ is functional.

(c) If Σ contains the schema ��ϕ→�ϕ then the canonical model for Σ is weakly dense.

(see Figure 4 on p. 10 for definitions of these frame properties).

Proof. Notice that Part (b) follows immediately from part (a) and the seriality proof in Theorem 86. So

we do parts (a) and (c) in turn.

For (a), suppose that Σ contains the schema ♦ϕ → �ϕ, to show that RΣ is partialy functional

we need to prove that for any u, v, w ∈ WΣ, if RΣwu and RΣwv then u = v. Since RΣwu we have

{ϕ : �ϕ ∈ w} ⊆ u and since RΣwv also {ϕ : �ϕ ∈ w} ⊆ v. The identity u = v will follow if we can

establish the two inclusions u ⊆ v and v ⊆ u. For the first inclusion, let ϕ ∈ u; then ♦ϕ ∈ w, and by

the schema and deductive closure of w also �ϕ ∈ w, whence by the hypothesis that RΣwv, ϕ ∈ v. The

second inclusion is similar, so this establishes part (a).

For part (c): Suppose Σ contains the schema ��ϕ→�ϕ and to show that RΣ is weakly dense, let

RΣuv. We need to show that there is a maximally Σ-consistent set w such that RΣuw and RΣwv. Let:

Γ = {ϕ : �ϕ ∈ u} ∪ {♦ψ :ψ ∈ v}.

It suffices to show that Γ is Σ consistent, for then by Lindenbaum’s lemma it can be extendend to a

maximally Σ-consistent set w such that {ϕ : �ϕ ∈ u} ⊆ w and {♦ψ :ψ ∈ v} ⊆ w, i.e., RΣuw and RΣwv.

Suppose for contradiction that Γ is not consistent. Then there are formulas �ϕ1, . . . ,�ϕn ∈ u and

ψ1, . . . ,ψm ∈ v such that ϕ1, . . . ,ϕn,♦ψ1, . . . ,♦ψm `Σ ⊥. Since ♦(ψ1∧ . . .∧ψm)→ (♦ψ1∧ . . . . . .♦ψm)

is provable in every normal modal logic, we argue as follows, contradicting the consistency of v:

ϕ1, . . . ,ϕn,♦ψ1, . . . ,♦ψm `Σ ⊥ ⇒ ϕ1, . . . ,ϕn `Σ (♦ψ1 ∧ . . .∧♦ψm)→⊥, Ded. Thm.;

⇒ ϕ1, . . . ,ϕn `Σ ♦(ψ1 ∧ . . .∧ψm)→⊥, Σ is normal;

⇒ ϕ1, . . . ,ϕn `Σ �¬(ψ1 ∧ . . .∧ψm), PL, re-writing;

⇒ �ϕ1, . . . ,�ϕn `Σ ��¬(ψ1 ∧ . . .∧ψm), Lemma 76;

⇒ �ϕ1, . . . ,�ϕn `Σ �¬(ψ1 ∧ . . .∧ψm), by the schema;

⇒ u `Σ �¬(ψ1 ∧ . . .∧ψm), Monotony;

⇒ �¬(ψ1 ∧ . . .∧ψm) ∈ u, Ded. closure;

⇒ ¬(ψ1 ∧ . . .∧ψm) ∈ v, since RΣuv. �
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On the strength of these examples, one might think that every system Σ of modal logic is complete,

in the sense that it proves every formula which is valid in every frame in which every theorem of Σ is

valid. Unfortunately, there are many systems that are not complete in this sense.

10. The finite model property

The purpose of this section is to establish the decidability of our systems of modal logic by showing

that they have the finite model property, i.e., that any formula that is true (false) in a model is also true

(false) in a finite model. The main tool will be that of filtrations.

89 . Definition: A set Γ of formulas is closed under subformulas if it contains every subformula of a

formula in Γ. Further, Γ is modally closed if it is closed under subformulas and moreover ϕ ∈ Γ implies

�ϕ,♦ϕ ∈ Γ.

90. Definition: Let M = (W, R, V ) and suppose Γ is closed under subformulas. Define a relation ≡ on

W to hold of any two worlds that make true the same formulas from Γ, i.e.:

u≡ v if and only if ∀ϕ ∈ Γ : M |=u ϕ⇔ N |=v ϕ.

Clearly, ≡ is an equivalence relation over W . Standardly, for any w ∈W , the equivalence class of w is

denoted by [w].

91. Definition: Let Γ be closed under subformulas and M = (W, R, V ). A filtration of M through Γ is

any model M∗ = (W ∗, R∗, V ∗), where:

(a) W ∗ = {[w] : w ∈W};
(b) For any u, v ∈W :

(i) If Ruv then R∗[u][v];

(ii) If R∗[u][v] then for any �ϕ ∈ Γ, if M |=u �ϕ then M |=v ϕ;

(iii) If R∗[u][v] then for any ♦ϕ ∈ Γ, if M |=v ϕ then M |=u ♦ϕ.

(c) V ∗(p) = {[u] : u ∈ V (p)}.

92. Theorem: If M∗ is a filtration of M through Γ, then for every ϕ ∈ Γ and w ∈W , we have M |=w ϕ

if and only if M∗ |=[w] ϕ.

Proof. By induction on ϕ, using the fact that Γ is closed under subformulas. For ϕ atomic, say p: the

left-to-right direction is immediate, as M |=w p only if w ∈ V (p), which implies [w] ∈ V ∗(p), i.e.,

M∗ |=[w] p. Conversely, suppose M∗ |=[w] p, i.e., [w] ∈ V ∗(p); then w ≡ w′ ∈ V (p), and since p ∈ Γ,

also w ∈ V (p), so that M |=w p. The cases for the Boolean connectives follow immediately from the

inductive hypothesis and closure of Γ under subformulas.

So we do the case for �ϕ ∈ Γ. Suppose M |=u �ϕ; to show that M∗ |=[u] ϕ, let v be such that

R∗[u][v]. From Definition 91, part (ii), we have that M |=v ϕ, and by inductive hypothesis M∗ |=[v] ϕ.

Since v was arbitrary, M∗ |=[u] �ϕ follows. Conversely, suppose M∗ |=[u] �ϕ and let v be arbitrary such
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that Ruv. From Definition 91, part (i), we have R∗[u][v], so that M∗ |=[v] ϕ; by inductive hypothesis

M |=v ϕ, and since v was arbitrary, M |=u �ϕ. �

93. Corollary: Let Γ be closed under subformulas. Then:

3 If M∗ is a filtration of M through Γ then for any ϕ ∈ Γ: M |= ϕ if and only if M∗ |= ϕ.

3 If C is a class of models and Γ(C ) is the class of Γ-filtrations of models in C , then any formula

ϕ ∈ Γ is valid in C if and only if it is valid in Γ(C ).

We have not yet shown that there are any filtrations. But indeed, for any model M , there are many

filtrations of M through Γ. We identify two, in particular: the finest and coarsest filtrations. Filtrations

of the same models will differ in their accessibility relation (as Definition 91 stipulates directly what

W ∗ and V ∗ should be like). The finest filtration will have as few related worlds as possible, whereas

the coarsest will have as many as possible.

94. Definition: Where Γ is closed under subformulas, the finest filtration M∗ of a model M is defined

by putting:

R∗[u][v] if and only if ∃u′ ∈ [u] ∃v′ ∈ [v] : Ru′v′.

95. Proposition: The finest filtration M∗ is indeed a filtration.

Proof. We need to check that R∗, so defined, satisfies Definition 91, part (b). We check the three

conditions in turn.

(i) If Ruv then by reflexivity of ≡, also R∗[u][v].

(ii) Suppose �ϕ ∈ Γ, R∗[u][v], and M |=u �ϕ. By definition of R∗, there are u′ ≡ u an v′ ≡ v such

that Ru′v′. Since u and u′ agree on Γ, also M |=u′ �ϕ, so that M |=v′ ϕ. By closure of Γ, v and v′

agree on ϕ, so M |=v ϕ, as desired.

(iii) Suppose ♦ϕ ∈ Γ, R∗[u][v], and M |=v ϕ. Arguing similarly to the previous case, M |=u ♦ϕ. �

96. Definition: Where Γ is closed under subformulas, the coarsest filtration M∗ of a model M is defined

by putting R∗[u][v] if and only if both of the following conditions are met:

(a) If �ϕ ∈ Γ and M |=u �ϕ then M |=v ϕ;

(b) If ♦ϕ ∈ Γ and M |=v ϕ then M |=u ♦ϕ.

97. Proposition: The coarsest filtration M∗ is indeed a filtration.

Proof. Given the definition of R∗, the only condition that is left to verify is the implication from Ruv to

R∗[u][v]. Assuming Ruv, suppose �ϕ ∈ Γ and M |=u �ϕ; then obviously M |=v ϕ. Similarly if ♦ϕ ∈ Γ
and M |=v ϕ then M |=u ♦ϕ. �

98. Proposition: If Γ is finite then any filtration M∗ of a model M through Γ is also finite.

Proof. If u ≡ v then, by Theorem 92, the set of ϕ ∈ Γ that are true at u is the same as the set of ϕ ∈ Γ
that are true at v. So to each [u] ∈ W ∗ we can assign a distinct subset of Γ. Hence if Γ contains n

sentences the cardinality of W ∗ is no greater than 2n. �
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99 . Definition: A system Σ of modal logic is said to have the finite model property if whenever a

formula ϕ is true at a world in a model of Σ then ϕ is true at a world in a finite model of Σ.

100. Proposition: Let U be the class of universal models (see Proposition 45) and UFin the class of

all finite universal models. Then any formula ϕ is valid in U if and only if it is valid in UFin.

Proof. Finite universal models are universal models, so the left-to-right direction is trivial. For the

right-to left direction, suppose that ϕ is false at some world w in a universal model M . Let Γ contain

ϕ as well as all of its subformulas; clearly Γ is finite. Take a filtration M∗ of M ; then M∗ is finite by

Proposition 98, and by Theorem 92 ϕ is false at [w] in M∗. It remains to observe that M∗ is also

universal: given u and v, by hypothesis Ruv and by Definition 91, part (b), also R∗[u][v]. �

101. Corollary: S5 has the finite model property.

Proof. By Propositions 45 and 100, if ϕ is true at a world in some reflexive and euclidean model

then it is true at a world in a finite universal model (universal models are obviously reflexive and

euclidean). �

The finite model property gives us an easy way to show that systems of modal logic given by schemas

are decidable (i.e., that there is a computable procedure to determine whether a formulas is provable in

the system or not).

102. Theorem: S5 is decidable.

Proof. Let ϕ be given, and suppose the propositional variables occurring in ϕ are among p1, . . . , pk.

Since for each n there are only finitely many models with n worlds assigning a value to p1, . . . , pk, we

can enumerate, in parallel, all the theorems of S5 by generating proofs in some systematic way; and

all the models containing 1, 2, . . . worlds and checking whether ϕ fails at a world in some such model.

Eventually one of the two parallel processes will give an answer, as by Theorem 87 and Corollary 101,

either ϕ is provable or it fails in a finite universal model. �

The above proof works for S5 because filtrations of universal models are automatically universal.

The same holds for reflexivity and seriality, but more work is needed for other properties, as shown in

the following exercises.

103. Exercise: Show that any filtration of a serial or reflexive model is also serial or reflexive (respec-

tively).

104. Exercise: Find a non-symmetric (non-transitive, non-euclidean) filtration of a symmetric (transi-

tive, euclidean) model.
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C1(u, v):
if �ϕ ∈ Γ and M |=u �ϕ then M |=v ϕ; and
if ♦ϕ ∈ Γ and M |=v ϕ then M |=u ♦ϕ;

C2(u, v):
if �ϕ ∈ Γ and M |=v �ϕ then M |=u ϕ; and
if ♦ϕ ∈ Γ and M |=u ϕ then M |=v ♦ϕ;

C3(u, v):
if �ϕ ∈ Γ and M |=u �ϕ then M |=v �ϕ; and
if ♦ϕ ∈ Γ and M |=v ♦ϕ then M |=u ♦ϕ;

C4(u, v):
if �ϕ ∈ Γ and M |=v �ϕ then M |=u �ϕ; and
if ♦ϕ ∈ Γ and M |=u ♦ϕ then M |=v ♦ϕ;

Figure 10: Conditions on possible worlds for defining filtrations.

11. More on filtrations

105. Definition: Let Γ be closed under subformulas and M = (W, R, V ) a model. Then we can define

conditions on pairs of worlds u, v as given in the table of Figure 10.

106. Theorem: Let M = (W, R, P) be a model, Γ closed under subformulas. Let W ∗ and V ∗ be defined

as in Definition 91. Then:

(a) If R∗ is defined as R∗[u][v] if and only if C1(uv)& C2(u, v) then R∗ is symmetric, and M∗ =

(W ∗, R∗, V ∗) is a filtration if M is symmetric.

(b) If R∗ is defined as R∗[u][v] if and only if C1(uv)& C3(u, v) then R∗ is transitive, and M∗ =

(W ∗, R∗, V ∗) is a filtration if M is transitive.

(c) If R∗ is defined as R∗[u][v] if and only if C1(uv)& C2(u, v)& C3(u, v)& C4(u, v) then R∗ is symmet-

ric and transitive, and M∗ = (W ∗, R∗, V ∗) is a filtration if M is symmetric and transitive.

(d) If R∗ is defined as R∗[u][v] if and only if C1(uv)& C3(u, v)& C4(u, v) then R∗ is transitive and

euclidean, and M∗ = (W ∗, R∗, V ∗) is a filtration if M is transitive and euclidean.

Proof. We do part (a) as an example: it’s immediate that R∗ is symmetric, since C1(u, v)⇔ C2(v, u)

and C2(u, v)⇔ C1(v, u). So it’s left to show that if M is symmetric then M∗ is a filtration through Γ.

By condition C1(u, v) we get that: if �ϕ ∈ Γ and M |=u �ϕ then M |=v ϕ, and if ♦ϕ ∈ Γ and M |=v ϕ

then M |=u ♦ϕ. So all we need is that Ruv implies R∗[u][v].

So suppose Ruv, to show R∗[u][v] we need C1(u, v)& C2(u, v). For C1: if �ϕ ∈ Γ and M |=u �ϕ

then also M |=v ϕ (since Ruv); and similarly if ♦ϕ ∈ Γ and M |=v ϕ then M |=u ♦ϕ. For C2: if �ϕ ∈ Γ
and M |=v �ϕ then Ruv implies Rvu by symmetry, so that M |=u ϕ; similarly if ♦ϕ ∈ Γ and M |=u ϕ

then M |=v ♦ϕ(since Rvu by symmetry). �

This approach does not work in the case of models that are euclidean or serial and euclidean.

Consider the model at the top of Figure 11, which is both euclidean and serial. Let Γ = {p,�p}. When

taking a filtration through Γ, then [w1] = [w3] since w1 and w3 are the only worlds that agree on Γ.

Any filtration will also have the arrow inherited from M , as depicted in Figure 12. But we cannot add

arrows to that model in order to make it euclidean, for then there would be a double arrow between
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w2 and w4, and hence also between w2 and w5. But �p is true at w2 while p is false at w5.

•
w1

¬p
•

w2

p
�p �p

•
w3

¬p
•

w4

p
•

w5

¬p
�p ¬�p ¬�p

Figure 11: A serial and euclidean model

•
[w1] = [w3]

¬p
�p

•
w2

p,�p

•
w4 p

•
w5

¬p
¬�p ¬�p

Figure 12: The filtration from the model in Figure 11.

In particular, it is not enough to consider filtrations through arbitrary Γ’s closed under subsentences.

Instead we need to consider sets Γ that are modally closed (see Definition 89). Such sets of sentences

are infinite, and therefore do not lead immediately to the decidability of the corresponding system.

107 . Theorem: Let Γ be modally closed and M = (W, R, V ). If M∗ = (W ∗, R∗, V ∗) is a coarsest

filtration of M , then M∗ is symmetric, transitive or euclidean if M is symmetric, transitive, or euclidean,

respectively.

Proof. The proof of transitivity uses the validity of both 4 and 4♦ in all transitive models, and likewise

euclideanness uses the fact that both 5 and 5♦ are valid in all euclidean models, and the proof of

symmetry likewise uses both B and B♦.

If M∗ is a coarsest filtration, then by definition R[u][v] holds if and only if C1(u, v). For transitivity,

suppose C1(u, v) and C1(v, w): to show C1(u, w) suppose M |=u �ϕ; then M |=u ��ϕ; since ��ϕ ∈ Γ
by closure, also by C1(u, v), M |=v �ϕ and by C1(v, w), also M |=w ϕ. The case for ♦ϕ is similar. �
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Part III

Problem sets

12. Problem set 1: understanding Kripke semantics

1. Problem (60 points): Consider the following model M for the language comprising p1, p2, p3 as the

only propositional variables:

w1 • • •
w2

w3

p1 p1, p2 p1, p2, p3

Are the following formulas and schemas true in the model M , i.e., true at every world in M? Explain.

(a) p→ ♦p (for p atomic);

(b) ϕ→ ♦ϕ (for ϕ arbitrary);

(c) �p→ p (for p atomic);

(d) ¬p→ ♦�p (for p atomic);

(e) ♦�ϕ (for ϕ arbitrary);

(f) �♦p (for p atomic).

2. Problem (20 points): For each of the following formulas find a model M = (W, RV ) and a world

w ∈W such that the formula fails at w:

(a) p→��p;

(b) �(p ∨ q)→ (�p ∨�q).

3. Problem (20 points): For each of the following schemas find a model M such that every instance of

the schema is true in M:

(a) ϕ→ ♦♦ϕ;

(b) ♦ϕ→�ϕ.

13. Problem set 2: provability

1. Definition: Given a normal system Σ of modal logic, say that ϕ is provable in Σ, written Σ ` ϕ,

if and only if there is a proof of ϕ from axioms in Σ using MP and RN. Equivalently, ϕ belongs to the

smallest set of sentences containing Σ and closed under tautological implication and RK.

2. Problem (24 points): Provide K-proofs of the following:

(a) ♦¬⊥→ (�ϕ→ ♦ϕ);

(b) �(ϕ ∨ψ)→ (♦ϕ ∨�ψ);
(c) (♦ϕ→�ψ)→�(ϕ→ψ).

For ease of reference, we restate here Theorem 60:
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Soundness Theorem: if schemas S1, . . . ,Sn are valid in the classes of models Cn, . . . ,Cn, respectively,

then KS1 . . .Sn ` ϕ implies that ϕ is valid in the class of models Cn ∩ . . .∩Cn.

3. Definition: An inference rule of the form

ϕ1 . . .ϕn

ψ
(∗)

is admissible in a system Σ if and only if, whenever Σ ` ϕi for i = 1, . . . , n, then also Σ ` ψ. In other

words, adding the new rule to the system does not change the set of provable formulas.

4 . Definition: An inference rule of the form (∗) is derivable in a system Σ if and only if Σ ` ϕ1 →
(ϕ2→ (· · · (ϕn→ψ) · · · ).

5. Problem (6 points): Show that if a rule is derivable in Σ then it is admissible in Σ.

6. Definition: Define a function σ from formulas into formulas recursively by setting:

σ(p) = p;

σ(⊥) = ⊥;

σ(¬ϕ) = ¬σ(ϕ);

σ(ϕ→ψ) = σ(ϕ)→ σ(ψ);

σ(�ϕ) = ϕ.

So σ erases the outermost occurrence of �. For instance, compute σ(�(♦A→ ♦�B)) and σ(♦A→
♦�B) .

7. Problem (20 points): Show that if K ` ϕ then K ` σ(ϕ) (use induction on the number of lines in

the proof).

8. Problem (10 points): Show that the following inference rules are admissible in K:

(a)
♦ϕ

ϕ
(b)

�ϕ→�ψ

ϕ→ψ
(c)

�ϕ

ϕ
.

If Σ and Σ′ are two systems such that Σ ⊆ Σ′ then (obviously) every theorem of Σ is a theorem of

Σ′. The situation is different, however, for rules. If a rule of the form (∗) is admissible in Σ, it does

not follow that it is admissible in Σ′ as well: the latter has more theorems than the former, and so the

harder it is to show that a given rule is admissible.

9 . Problem (10 points): Show that KB ` �(ϕ → ♦♦ϕ), but KB 6` ϕ → ♦♦ϕ. Cheat: for half the

credit, use completeness of KB with respect to symmetric models to show that KB `�(ϕ→ ♦♦ϕ).

10. Problem (10 points): Show that K5 ` �(ϕ→ ♦ϕ), but K5 6` ϕ→ ♦ϕ. Cheat: for half the credit,

use completeness of K5 with respect to euclidean models to show that K5 `�(ϕ→ ♦ϕ).

11. Problem (10 points): Is the rule (c) above admissible in KB? in K5?

32



12. Problem (10 points): We know from Problem 1 that all derivable rules are admissible. Show that

the converse is not true.

14. Problem set 3: p-morphisms

1. Definition: A frame is irreflexive if for any world w in the frame it’s not the case that R(w, w), i.e.,

no world is accessible from itself.

2. Definition: Given two frames F = (W, R) and G = (X , S), a p-morphism of the first onto the second

is a function π : W → X such that:

• π is surjective;

• if R(u, v) then S(π(u),π(v));

• if S(π(u), w) then there is a v ∈W such that π(v) = w and R(u, v).

Given two models M = (W, R, U) and N = (X , S, V ), a p-morphism of the first onto the second is a

p-morphism π of the corresponding frames satisfying the additional condition that for all w ∈ W and

propositional variable p: w ∈ U(p) if and only if π(w) ∈ V (p).

3. Problem (10 points): Show that there is a p-morphism between the following two frames F and G,

where W = {w1, w2, w3, w4} and X = {u1, u2} and R and S are as depicted:

•

• •

•

w1

w2 w3

w4

F

•

•

u1

u2

G

4. Problem (15 points): Let the frames F and G be like in Problem 3, and assume that the language

only comprises propositional variable p1, p2, p3 for simplicity.

(a) find valuations U : {p1, p2, p3} → P (W ) and V : {p1, p2, p3} → P (X ) such that there is a p-

morphism between the models M = (W, R, U) and N = (X , S, V ).

(b) Are there valuations U and V such that the corresponding models are not p-morphic?

5. Problem (15 points): Let π be a p-morphism between models M = (W, R, U) and N = (X , S, V ).

Show that for any formula ϕ and world w ∈W ,

M |=w ϕ if and only if N |=π(w) ϕ.
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6. Problem (15 points): Show that for any model N on G there is a model M on F and a p-morphism

π from M onto N .

7. Problem (10 points): Show that the converse to Problem 6 does not hold, i.e., that there is a model

on F that is not p-morphic to any model on G.

8. Problem (10 points): Show that if a formula ϕ is valid on F then it is valid on G.1

9 . Problem (10 points): Show that the converse of Problem 8 does not hold, i.e., that there is a

formula ϕ that is valid on G but not on F .2

10. Problem (15 points): The schema T , i.e., �ϕ → ϕ is valid in a frame if and only if the frame is

reflexive. Is there a schema that is valid in a frame if and only if the frame is irreflexive?

15. Problem set 4: pebble games over Kripke frames

1. Definition (Two-pebble games on Kripke structures): Given two Kripke models M = (W, R, U) and

N = (X , S, V ) and worlds u ∈W and v ∈ X , the two-pebble game G(M , u : N , v) between Abelard (“Abe

the Spoiler”) and Eloïse (“Elly the Defender”) is defined as follows.

Abelard and Eloïse share two pebbles, which at the beginning of the game are placed on the worlds

u and v. A round in the game begins with Abelard’s sliding one of the pebbles along the accessibility

relation (R in M or S in N). Eloïse likewise responds by sliding the other pebble along S or R, respec-

tively. In this way, two worlds u′ and v′ are identified such that Ruu′ and Svv′. If neither player wins

the game at this round (as explained below), then both players advance and play a round of the game

G(M , u′ : N , v′). Suppose the pebbles are on worlds u ∈W and v ∈ X ; this configuration is assessed as

a win in the game G(M , u : N , v) for one or the other players based on whether the following conditions

hold:

(a) If there is an atomic sentence p true at u and false at v, or vice-versa, it’s an automatic win for

Abelard.

(b) If the worlds u and v are both terminal, it’s an automatic win for Eloïse.

(c) If at any point Eloïse cannot slide her pebble to match Abelard’s move, he wins.

(d) If the game goes on forever, that counts as a win for Eloïse.

2. Definition: A strategy for either player in the game G(M , u : N , v) is just a function prescribing a

response to each possible move of the other player. A winning strategy is strategy that guarantees a win

for the player following it.

3. Problem: Show that if Abelard does not have a winning strategy in the game G(M , u : N , v) then

for any modal formula ϕ we have M |=u ϕ if and only if N |=v ϕ.

1Warning. This requires showing that if ϕ is true in any model on F then it is true in any model on G. Use Problem 6.
2Hint. Consider a formula that says: ‘At any non-terminal world: if ϕ is true and also true at any accessible terminal world,

then ϕ is necessary.’

34


