# Descartes's Model of Reflection and Refraction

Philosophy 168 G. J. Mattey

## Reflection and refraction

- In his 1637 *Optics*, Descartes offered an explanation of the phenomena of reflection and refraction
- The goal is to generate rules which predict accurately the behavior of light when reflected or refracted
- The explanation is carried out in geometrical terms
- It relies on several crucial assumptions

## Theoretical assumptions

- The explanation of both reflection and refraction uses as a model the behaviour of a tennis ball hit toward a surface by a racquet
- Three theoretical assumptions are made
  - The determinant of motion and the determinant of the direction of motion are distinguished
  - The motion of the ball can be decomposed into a horizontal and a vertical component
  - The motion of the ball can be represented geometrically with straight lines

# Idealizing assumptions for reflection

- The ball moves at a constant speed through its whole path
- The ball moves toward the ground, which is perfectly flat and hard
- The size, shape, weight of ball have no effect on the motion of the ball

# Representation of initial motion



# Decomposition of horizontal and vertical components



# Duplication of the horizontal component



# Duplication of the distance travelled



# Determination of the path



# Determination of the angles of incidence and reflection



# Idealizing assumptions for refraction

- The ball moves at a constant speed before contact and at a constant speed after contact
- The ball moves toward a linen sheet, which can be punctured
- Contact with the linen causes the ball to lose (case 1) or gain (case 3) some speed
- The size, shape, weight of ball have no effect on the motion of the ball

# New theoretical assumptions for refraction

- The linen offers opposition to the ball in the downward direction
- The linen offers no opposition in the horizontal direction

# Case 1: Representation of the initial motion at a steep angle, with speed to decrease upon contact



# Decomposition of horizontal and vertical components



# Doubling the size of the horizontal component



# Duplication of the distance of the initial motion



# Determination of the path after contact with the linen



### Descartes's reasoning

- The ball returns to the circumference of the circle from the point of contact B in twice the time it took to get from A to B, since it lost half its speed
- In twice the time, it covers twice the distance on the second horizontal component as it did on the first, since (by assumption) the horizontal determinant did not change
- So, it would have to arrive at line EF at the same time it arrives on the circumference: at point I

#### A more common case

- The ball strikes the surface of water and continues to move through the water
- On impact, the water reduces the speed of the ball by one-half, as before, but does not affect its horizontal determinant
- So the effect is the same
- Objection: the water would continue to reduce the speed of the ball
- Response: not given the idealizing assumptions

# Case 2: Representation of the initial motion a shallow angle



# Doubled horizontal distance and identical composite distance



## Reflection, not refraction

- When the ball enters at a steep angle, the vertical component is great enough it to allow completion of the horizontal component within the circle
- At the limit, the ball is dropped straight down, and there is no effect on the horizontal at all
- When the ball enters at a shallow angle, the vertical component is not great enough to compensate for the increased horizontal component
- So, the ball is reflected, as with skipping rocks

# Case 3: Representation of the initial motion at a steep angle, with speed to increase upon contact



# Halved horizontal distance and identical composite distance



# Determination of the path after contact with the linen



# Reversing the model

- It has been established that degree to which the speed is increased or decreased by entry into the medium determines the path BI after contact
- Descartes asserts that if the path is determined by BI, then the change of speed can be calculated

## Path through the medium is given



# Duplication of initial distance AB



# Determination of relative speed (i.e., horizontal component)



# Conclusions

- These conclusions apply to light if light behaves the same way as these idealized bodies
- The angle formed with the surface and actual path varies depending on the difference in ease of penetration between the two media
- The angle will be less sharp on the side of the body that is more easily penetrated
- The degree of the angle varies exactly with the degree of the difference in degree of ease

## Angles of incidence and refraction



# Proportionality of angles

- Differences between ease of penetration of the media are modeled by the lines CB and BE
- Therefore, the proportions of the angles vary with the proportions of the lines CB and BE
- If we take the proportions of the angles to be their sines, then they are proportional to CB and BE
- GI = BE, so GI/BI = BE/BI. AB = BI, so the denominators are canceled out in CB/AB and BE/BI
- *Sin r* : *sin i* :: CB : CE

# Snell's Law

- Descartes's result is equivalent to Snell's law: *sin i = n sin r*, where *n* is a constant depicting the medium
- Snell's constant *n* is reflected in Descartes's proportions of speeds
- In Descartes's first example,  $CB = \frac{1}{2}BE$
- So,  $CB/BH = \frac{1}{2} BE/BI$ , since BH = BI
- So,  $sin \ i = \frac{1}{2} sin \ r$
- Descartes was not the first to discover this fact